검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 661

        41.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 2003년부터 2022년까지 동해 남서부 해역에서 초미소(0.2-2 ㎛) 식물플랑크톤의 군집, 표층 수온 상승, 그리고 무기 영양염 간의 복잡한 상호작용을 다루었다. 동해에서 관측된 표층 수온의 상승 추세는 전 지구규모의 수온 상승과 일치하며, 여름에는 최 대 온도가 나타나지만 봄에는 최소 온도를 보여 일반적인 온대해역의 계절적 수온 변동과는 다른 양상을 보였다. 표층 무기 영양염의 농 도는 겨울에 증가하며 봄을 거치면서 서서히 감소하는 계절적 변동성을 나타냈다. 식물플랑크톤의 생물량을 대표하는 표층 총 chlorophyll-a 농도는 온대 해역의 전형적인 쌍봉분포(bimodal distribution) 양상을 보였다. 연구 기간 동안 초미소 식물플랑크톤의 기여도는 연평균 0.5%씩 지속적으로 증가하였으나, 총 chlorophyll-a 농도는 약한 감소 추세를 보였다. 초미소 식물플랑크톤의 기여도와 영양염 간에 는 강한 상관관계가 나타났으며, 이는 이러한 변동이 식물플랑크톤의 크기별 영양염의 가용성과 밀접하게 연관되어 있음을 의미한다. 이 러한 분석 결과는 해양 생태계의 변화 조건에서 식물플랑크톤이 어떻게 반응할는지 예측 가능하게 하므로, 생태학적으로 중요한 의미를 갖는다.
        4,200원
        44.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        During the operation of a nuclear power plant (NPP), the generation of radioactive waste, including dry active waste (DAW), concentrates, spent resin, and filters, mandates the implementation of appropriate disposal methods to adhere to Korea’s waste acceptance criteria (WAC). In this context, this study investigates the potential use of polymer concrete (PC) as a high-integrity container (HIC) material for solidifying and packaging these waste materials. PC is a versatile composite material comprising binding polymers, aggregates, and additives, known for its exceptional strength and chemical stability. A comprehensive analysis of PC’s long-term integrity was conducted in this study. First, its compressive strength, which is crucial for ensuring the structural stability of HICs over extended periods, was evaluated. Subsequently, the resilience of PC was tested under various stress conditions, including biological, radiological, thermal, and chemical stressors. The findings of this study indicate that PC exhibits remarkable long-term properties, demonstrating exceptional stability even when subjected to diverse stressors. The results therefore underscore the potential viability of PC as a reliable material for constructing high-integrity containers, thus contributing to the safe and sustainable management of radioactive waste in NPPs.
        4,000원
        45.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To broaden the utilization of nuclear energy, uranium as a fuel should be mined indispensably. Mining accounts for the largest portion of the cost of producing the uranium assembly. Therefore, this study analyzes the trends of uranium prices, which have a significant impacts on the mining cost. Uranium production contributing to the price fluctuations is explained in five periods from 1945 to the present. Moreover, the series of events affecting uranium prices from the 1970s until the present are verified. Among them, the most recent incidents considered in this study are the following: COVID-19 pandemic, Kazakhstan unrest, and Russia-Ukraine war. European countries have started to reconsider the transition to nuclear power to reduce their dependence on Russian oil and gas, which has contributed to the surge in uranium prices. Based on the results of this study, various international issues have been closely associated with the nuclear power industry and uranium, affecting the production of uranium and its price.
        4,000원
        46.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 논문은 한국산업경영시스템학회 연구윤리위원회 심의(2024.7.3.)결과, 중복게재가 확인되어 게재가 철회된 논문임. This study is to identify the maintenance service quality of eco-friendly cars, which are rapidly increasing recently. Research is conducted by synthesizing research from the perspectives of internal employees and external customers by using the service profit chain model. Specifically, it is to study the overall structural relationship between internal customer satisfaction, physical quality, interaction quality, outcome quality, external customer satisfaction and long-term orientation. For the study, 202 questionnaires were collected from internal employees and 204 questionnaires from external customers. The results of testing the research hypotheses targeting the internal employee group are as follows. As a result of testing hypothesis 1, internal customer satisfaction has a significant positive (+) effect on physical quality and interaction quality. As a result of testing hypothesis 2, the service quality of eco-friendly car maintenance has a significant positive (+) effect on each other. As a result of testing hypothesis 3, physical quality and outcome quality have a significant positive (+) effect on external customer satisfaction. The results of testing the research hypotheses targeting an external customer group are as follows. As a result of testing hypothesis 2, in the relationship between eco-friendly car maintenance service quality, physical quality has a significant positive (+) effect on interaction quality, and interaction quality has a significant positive (+) effect on outcome quality. As a result of testing hypothesis 3, interaction quality and outcome quality have a significant positive (+) effect on external customer satisfaction. As a result of testing Hypothesis 4, external customer satisfaction has a significant positive (+) effect only on intention to reuse. Finally, as a result of examining the difference in perception between the internal employee group and the external customer group in eco-friendly car maintenance service quality and external customer satisfaction, it was verified that there was a significant difference only in outcome quality and external customer satisfaction.
        5,500원
        47.
        2023.05 구독 인증기관·개인회원 무료
        Commercial operation of KORI Unit 1 ended in 2017, and the final decommissioning plan is currently under approval from the KINS. In order for the dismantling waste to go to the repository, it is judged that the radioactive waste generated during the commercial operation should be treated and disposed in advance. Among these radioactive wastes, spent filters contain various radionuclides. The radiation dose rate from the radiation coming out of the filters ranges from a low dose rate to high dose rate. Therefore, in order to handle the spent filters, a remote processing system is required to reduce the radiation exposure of workers. This paper evaluates the radioactive inventory of filters that are stored in the filter room at the KORI unit #1. For this purpose, a method for predicting the radioactivity of each nuclide in the filter, based on the radiation dose rate, has been described using the MicroShield code, which is a commercial shielding code. The information on the filters in the field has only the creation date, type, size, and surface dose rate. In order to evaluate the radioactivity inventory using such limited data, it is possible to know the nuclide radioactivity ratio in the filter. We took out some of the filters stored on site and measured from using the ISCOS system, a gamma nuclide analyzer. The radioactivity of each nuclide in the filter was inferred by modeling with the MicroShield code, based on the radiation dose rate and the radioactivity value of each nuclide measured in the field.
        48.
        2023.05 구독 인증기관·개인회원 무료
        Plasma torch melting has been considered as a promising treatment technology for radioactive waste generated by nuclear power plants. The IAEA reported in 2006, the plasma melting technology could be treated regardless of the type of radioactive wastes such as combustible, non-combustible and liquid. Also, the technology has the advantage of being an eco-friendly technology. It emits less harmful gases such as NOx, SOx, HCl and CO because it does not use fossil fuels. In KHNP CRI, the plasma torch melting system was developed as the new radioactive waste treatment technology. In this study, to evaluate the long-term integrity of the new facility, a demonstration test with concrete as a simulant was carried out for about 3 days. For the 3 days, the evaluation was conducted in view of abnormal shutdown, soundness of waste feeding device, electrode consumption, and so on.
        49.
        2023.05 구독 인증기관·개인회원 무료
        To prevent the release of radionuclides into the biosphere, disposal facilities for radioactive waste should be located to provide isolation from the accessible biosphere for tens of thousands to a million years after closure. During the period of interest, the constantly evolving natural environment and possible geological events of the site can cause disturbances to the containment function of the repository. Thus, for the long-term safety assessment of the repository, the possible long-term change of natural barrier should be considered. Due to the characteristics of radionuclides that transport mainly through the groundwater, understanding the long-term evolution of groundwater flow and geochemical properties is essential to assess the long-term changes in the natural barrier performance. The changes in characteristics of natural rocks and geological structures are one of the main factors that determine the hydrological and geochemical characteristics of the deep underground. In this study, we plan to develop a methodology to estimate these future geological evolutions in order to assess the possibility of hazardous events of the site that can affect hydrological or geochemical properties over the period of interest, and also in order to verify the change in the geological environment is within the safe performance range even after the period of interest. However, it is very unreliable to predict future changes in the natural environment because it is very heterogeneous, complex, and difficult to observe directly. For the preliminary study of the project, we reviewed cases of future evolution prediction researches with regard to the geological environment of disposal site and methods they applied to reduce the uncertainty of the prediction. The results will be used to establish basic data for future studies on the long-term evolution of hydraulic-mechanics performance of natural barrier and long-term evolution of geochemical performance around KURT site. In addition, it can contribute to construct long-term evolution scenario of the geological environment around future URL site.
        50.
        2023.05 구독 인증기관·개인회원 무료
        A methodology is under development to reconstruct and predict the long-term evolution of the natural barrier comprising the site of radioactive waste disposal. The natural barrier must protect the human zone from radionuclides for a long time. So for this, we need to be able to restore the evolution of the bedrock constituting the natural barrier from the past to the present and to predict from the present to the future. A methodology is being studied using surface outcrop, tunnel face of KURT (KAERI Underground Research Tunnel), and drill core at KAERI (Korea Atomic Energy Research Institute). Among them, drill core is an essential material for identifying deep geological properties, which could not be confirmed near the surface when considering the geological condition of the repository in the deep part. In this study, we selected several qualitative and quantitative analyses to construct a deep lithological model from the disposal perspective. These were applied to drill core samples around the KURT. There are the dikes presumed the Cretaceous were intruded by Jurassic granitoids in the study area. Analyzing trace elements of each rock type in the study area classified through geochemical characteristics and microstructure in previous studies made it possible to obtain qualitative information on the petrogenetic process. In addition, synthesizing the quantitative numerical age allows for grasping the evolution of bedrock, including intrusion and cutting relationships. LAICPMS was used for determining the age of zircons in plutonic rocks. The highly reliable 40Ar-39Ar method was selected for volcanic rocks because it can correct the loss of Ar gas and obtain the values of two types of Ar isotopes in a single sample. As a result, it was possible to infer the formation environment of rocks through anomalies in specific trace element content. And according to the numerical ages, it was possible to support the known separated rock type found in previous studies or to present a quantitative precedence relation for unclassified rocks. These methods could be applied to reconstruct the long-term evolution of bedrock within natural barriers.
        51.
        2023.05 구독 인증기관·개인회원 무료
        Research on the safety of nuclear spent fuel has been heavily experimented and modelled from a mechanical perspective. The issues of corrosion, irradiation creep, hydride and hydrogen embrittlement have been addressed more than two decades since the early 2000s. Among these degradation behavior, hydrogen embrittlement and hydride reorientation have been the most important topics for establishing the integrity of nuclear spent fuel and have been studied in depth. In order to assess the safety of spent nuclear fuel, firstly, it is necessary to establish the safety criteria in all nuclear cycle, i.e., the failure criteria guidelines for nuclear fuel assemblies and nuclear fuel rods, and then examine the safety analysis. The contents of U.S.NRC Regulations, Title 10 General, Chapter 1 Code of Federal Regulation (CFR), Part 50, 71 and 72, describe the safety criteria for the safety assessment of nuclear fuel assemblies and nuclear fuel rods. In this study, technically important points in safety analysis on nuclear fuel are checked through the reference of those NRC regulation. As result, we confirmed that the safety assessment of nuclear fuel after 20 years of interim storage is now being tested by ORNL and PNNL. There are not quantitative criteria related to material safety. However qualitative criteria which is dependent on environmentally condition describe the safety analysis. There is some literature study about DBTT, yield stress, ultimate tensile strength, flexural rigidity data. In FRAPCON code Modelling of yield strength and creep had been established, but radial hydride or hydride reorientation has not considered.
        52.
        2023.05 구독 인증기관·개인회원 무료
        The hydride reorientation (HR) of the post-irradiated nuclear fuel cladding after use affects the integrity of the spent nuclear fuel. During the dry storage process, which is an intermediate storage method, it was found that the hydride in the circumferential direction is rearranged into radial hydride, and this is believed to be due to factors such as hoop stress, peak temperature, accumulated hydrogen concentration, and cooling rate during the storage period. f(HR) = f(Tmax) + f(σH) + f(CH) + f(△T) + f(10Cy) + f(cooling rate) + ...... To simulate long-term dry storage of spent nuclear fuel, the hydride reorientation behavior was evaluated using unirradiated Zircaloy-4 (CWSRA) cladding with hydrogen charged under various hoop stresses (70, 80, 90, and 110 MPa) at long-term cooling periods (3, 6, and 12 months). Test results showed that as the cooling time increased, the sample with 90 MPa hoop stress at a maximum temperature of 400°C approached the ductility recommendation limit of 2%. In a 90 MPa hoop stress specimen with 3 months cooling period at peak temperature of 400°C, the offset strain was 4.24% at room temperature RCT, while it showed the result of 2.86% for the cooling period of 12 months. On the other hand, the specimen with hoop stress of 110 MPa and cooling period of 12 months showed result of 1.4%. The test results need to take into account errors in hydrogen charging and hydrogen analysis, and it is necessary to consider reproducibility through repeated tests. These results indicate the need for continued attention to the evaluation of the effects of hydride reorientation due to long-term cooling in the context of the integrity of spent fuel.
        53.
        2023.05 구독 인증기관·개인회원 무료
        On-site storage facility using concrete silo dry storage systems for spent nuclear fuel at Wolsong NPP site came into operation in 1992 and was expanded four times, and a total of 300 silo dry storage systems are currently in operation. The design lifetime of silo dry storage systems has been licensed for 50 years. As the dry storage systems are subject to time constraints for a limited lifetime, countries operating the dry storage systems are working to ensure the long-term integrity of dry storage systems and IAEA also recommends that the dry storage systems be assessed for long-term storage. To demonstrate the long-term integrity due to material degradation during the licensed design lifetime, the structural integrity of silo dry storage systems was evaluated by considering the material degradation characteristics of concrete. The concrete compressive strength results measured so far by the rebound hammer method, which is an internationally standardized nondestructive test method for converting hardness into compressive strength using the correlation between rebound number and strength at the time of a Schmidt hammer strike, were analyzed in accordance with Wolsong NPP’s procedure to quantify the degradation characteristics, and the prediction of concrete strengths for 20 years and 50 years after construction of the silo dry storage systems was determined, respectively. Based on these residual compressive strengths, structural analyses of the silo dry storage systems were carried out under normal, off-normal and accident conditions of the related regulations, and the structural integrity of silo dry storage systems was reevaluated. It was confirmed the silo dry storage systems are able to maintain structural integrity up to the design lifetime of 50 years even if the concrete is deteriorated.
        58.
        2023.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Oral squamous cell carcinoma (OSCC), which accounts for approximately 90% of oral cancers, has a high rate of local recurrence and a poor prognosis despite improvements in treatment. Exosomes released from OSCC cells promote cell proliferation and metastasis. Although it is clear that the biogenesis of exosomes is mediated by the endosomal sorting complex required for transport (ESCRT) machinery, the gene expression pattern of ESCRT, depending on the cell type, remains elusive. The exosomal release from the human OSCC cell lines, HSC-3 and HSC-4, and their corresponding gefitinib-resistant sub-cell lines, HSC-3/GR and HSC-4/GR, was assessed by western blot and flow cytometry. The levels of ESCRT machinery proteins, including Hrs, Tsg101, and Alix, and whole-cell ubiquitination were evaluated by western blot. We observed that the basal level of exosomal release was higher in HSC-3/GR and HSC-4/GR cells than in HSC-3 and HSC-4 cells, respectively. Long-term gefitinib exposure of each cell line and its corresponding gefitinib-resistant sub-cell line differentially induced the expression of the ESCRT machinery. Furthermore, whole-cell ubiquitination and autophagic flux were shown to be increased in gefitinib-treated HSC-3 and HSC-4 cells. Our data indicate that the expression patterns of the ESCRT machinery genes are differentially regulated by the characteristics of cells, such as intracellular energy metabolism. Therefore, the expression patterns of the ESCRT machinery should be considered as a key factor to improve the treatment strategy for OSCC.
        4,000원
        59.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 요양병원 간호종사자인 간호사 및 간호조무사를 대상으로 이직의도에 미치는 영향요 인을 파악하기 위한 서술적 조사연구이다. 2022년 8월 12일부터 16일까지 G시 소재 4개 요양병원 간호종 사자 146명을 대상으로 실시되었다. 연구결과, 이직의도는 일반적 특성 중 연령, 종교, 결혼상태, 학력정도, 월 평균 급여, 직종, 근무형태 및 이직경험에 대해 유의한 차이가 있었다(p<.05). 이직의도는 직무스트레스 (r=.51, p<.001) 및 소진(r=.62, p<.001)과는 유의한 양의 상관관계가 있었으며 조직몰입과는 유의한 음의 상관관계가 있었다(r=.-56, p<.001). 조직몰입은 직무스트레스(r=-.25, p=.002) 및 소진(r=.-.67, p<.001) 과 유의한 음의 상관관계가 있었으며 소진은 직무스트레스(r=.56, p<.001)와 유의한 양의 상관관계가 있었 다. 이직의도에 영향을 미치는 요인으로는 직무스트레스(β=.32, p<.001), 조직몰입(β=-.30, p=.001), 학 력정도(β=.17, p=.022)로 나타났으며 설명력은 49.6%였다. 본 연구결과를 토대로 요양병원 간호종사자의 직무스트레스 감소 및 조직몰입 향상을 위한 근무환경 개선 등을 통해 이직의도 감소를 위한 노력이 필요 하리라 생각된다.
        4,200원
        1 2 3 4 5