검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 76

        43.
        2004.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, chemical solution mixing and hydrogen reduction method was used to fabricate nanostructured alloy powders. Fe-Co chloride mixture, FeCl and COCI with 99.9% purity, were reduced in hydrogen atmosphere. Nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated. Magnetic properties of fabricated (x=0, 10, 30, 50, 70, 100) alloy powders with the same grain size were measured because size factor can affect magnetic properties. Coercivity of Fe-Co alloy powders were increased with increasing Co contents. Maximum value of coercivity in various Co contented Fe-Co alloy powders with similar grain size was 125 Oe at Fe. Saturation magnetization value at FeCo composition showed maximum value of 219 emu/g and saturation magnetization value decreased with increasing Co contents and minimum value of 155 emu/g was observed at Co.
        4,000원
        44.
        2003.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanostructured Cu-AlO composite powders were synthesized by thermochemical process. The synthesis procedures are 1) preparation of precursor powder by spray drying of solution made from water-soluble copper and aluminum nitrates, 2) air heat treatments to evaporate volatile components in the precursor powder and synthesis of nano-structured CuO + O, and 3) CuO reduction by hydrogen into pure Cu. The suggested procedures stimulated the formation of the gamma-AlO, and different alumina formation behaviors appeared with various heat treating temperatures. The mean particle size of the final Cu/AlO composite powders produced was 20 nm, and the electrical conductivity and hardness in the hot-extruded bulk were competitive with Cu/AlO composite by the conventional internal oxidation process
        4,000원
        45.
        2003.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is the fabrication of nano-sized Fe-Co alloy powders with soft magnetic properties by the slurry mixing and hydrogen reduction (SMHR) process. 0 and powders with 99.9% purities were used for synthesizing nanostructured Fe-Co alloy powder. Nano-sized Fe-Co alloy powders were successfully fabricated using SMHR, which was performed at 50 for 1 h in H atmosphere. The fabricated Fe-Co alloy powders showed ' phase (ordered body centered cubic) with the average particle size of 45 nm. The SMHR powder exhibited low coercivity force of 32.5 Oe and saturation magnetization of 214 emu/g.
        3,000원
        51.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The structural studies of amorphous isotropic carbon prepared from pyrolysis of phenol formaldehyde resin have been carried out using X-ray diffraction. X-ray diffraction from as prepared sample at 1000℃ and a sample treated at 1900℃ revealed that both are amorphous even though there are small differences in short range order. It is found that both are graphite like carbon (GLC) with predominantly sp2 hybridization. Small angle X-ray scattering results show that as prepared sample mainly consists of thin two dimensional platelets of graphitic carbon whereas they grow in thickness to become three dimensional materials of nano dimensions.
        3,000원
        52.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. - based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The additions increase the mechanical strength of the composites compared to the metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of 700 MPa and a ductility of 5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is 550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few -(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.
        4,800원
        53.
        2002.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the WC-10 wt.%Co nanopowders doped by grain growth inhibiter were produced by three different methods based on the spray conversion process. Agglomerated powders with homeogenous distribution of alloying elements and with internal particles of about 100-200 nm in diameter were synthesized. The microstructural changes and sintering behavior of hardmetal compacts were compared with doping method and sintering conditions. The microstructure of hardmetals was very sensitive to doping methods of inhibitor. Nanostructured WC-Co hardmetal powder compacts containing TaC/VC doped by chemical method instead of ball-milling shown superior sintering densification, and the microstructure maintained ultrafine scale with rounded WC particles.
        4,000원
        55.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conventional Fe-Co alloys are important soft magnetic materials that have been widely used in industry. Compared to its polycrystalline counterpart, the nanostructured materials have showed superior magnetic properties, such as higher permeability and lower coercivity due to the single domain configuration. However, magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as grain size, internal strain and crystal structure. Thus, studies on synthesis of nanostructured materials with controlled microstructure are necessary for a significant improvement in magnetic properties. In the present work, starting with two powder mixtures of Fe and Co produced by mechanical alloying (MA) and hydrogen reduction process (HRP), differences in the preparation process and in the resulting microstructural characteristics will be described for the nano-sized Fe-Co alloy particles. Moreover, we discuss the effect of the microstructure such as crystal structure and grain size of Fe-Co alloys on the magnetic properties.
        4,000원
        56.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanosized tungsten carbide powders were synthesized by the chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl(). The effect of CVC parameters on the formation and the microstructural change of as-prepared powders were studied by XRD, BET and TEM. The loosely agglomerated nanosized tungsten-carbide() particles having the smooth rounded tetragonal shape could be obtained below in argon and air atmosphere respectively. The grain size of powders was decreased from 53 nm to 28 nm with increasing reaction temperature. The increase of particle size with reaction temperature represented that the condensation of precursor vapor dominated the powder formation in CVC reactor. The powder prepared at was consisted of the pure W and cubic tungsten-carbide (), and their surfaces had irregular shape because the pure W was formed on the powders. The and W powders having the average particles size of about 5 nm were produced in vacuum.
        4,000원
        57.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new approach to produce nanostructured WC/Co composite powders by a mechanochemical process was made to improve the mechanical properties of advanced hardmetals. Homogeneous spherical W-Co salt powders were made by spray drying of aqueous solution from ammonium metatungstate(,AMT) and cobalt nitrate hexahydrate (Co(NO).6). spray dried W-Co salt powders were calcined for 1 hr at in atmosphere of air. The oxide powder was mixed with carbon black by ball milling and this mixture was heated with various temperatures and times in . The composite oxide powders were obtained by calcinations at . The primary particle size of W/Co composite oxide powders by SEM was 100 nm. The reduction/carburization time decreased with increasing temperatures and carbon additions. The average size of WC particle carburized at by TEM was smaller than 50 nm.
        4,000원
        58.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of carbon black (CB) content and anodic oxidation treatment with AgNO3 on positive temperature coefficient (PTC) behavior of CB/HDPE nanocomposites were investigated. Also, the addition of elastomer as a toughing agent was studied. The 20~50 wt% of CB, 0~5 wtt% of elastomer, and 1 wt% of AgNO3-filled HDPE nanocomposites were prepared using the internal mixer in 60 rpm at 160˚C and the compression-molded at 180˚C for 10 min. As a result, the room temperature resistivity and PTC intensity of the composites were dependent, to a large extent, on the content of CB, addition of elastomer, and surface chemical properties that were controlled in the relative arrangements of the carbon black aggregates in a polymeric matrix. Moreover, the composites with relatively low room temperature resistivity and suitable PTC intensity could be achieved by treatment of AgNO3. Consequently, it was noted that PTC effect was due to the deagglomeration or the breakage of the conductive networks caused by thermal expansion or crystalline melting of the polymeric matrix.
        4,000원
        60.
        2001.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 기계적 합금화 공정을 통하여 평균 10nm의 크기를 가지는 결정립으로 이루어지는 나노구조 Fe-Co 합금분말을 제조하였으며 제조된 합금분말을 PECS 공정으로 소결하여 벌크의 나노구조 Fe-Co 연자성 합금을 제조하고자 하였다. PECS 공정은 소결온도를 700, 800, 900과 1000˚C로 변화시키고 유지시간을 0에서 16분가지 변화시켜주며 수행하였다. PECS 공정의 나노구조 소결체 제조에 관한 효율성을 평가하였으며 소결온도와 유지시간의 변화에 따른 소결밀도와 미세구조의 변화를 관찰하여 최적의 소결조건을 찾고자하였다. 또한 각 소결조건에서 제조된 소결체들의 보자력과 포화자화값을 측정하여 자성특성을 평가하였다.
        4,000원
        1 2 3 4