In this study, groundwater flow was analyzed targeting Dae-jeong watershed, which exhibited the largest variations of groundwater levels at the identical elevation points among the 16 watersheds of Jeju Island. The issues of the methods applied in practice were identified and improvement plans were suggested. This groundwater-flow estimates derived by applying hydraulic conductivity values onto zones of equal topographic ground level were found to be quite different from actual measured groundwater flow. Conversely, groundwater-flow estimates that utilized hydraulic conductivity values applied onto groundwater-level equipotential lines indicated relatively lesser divergences from actual measured groundwater flow. The reliabilities of the two approaches were assessed for 60 randomly selected points on DEM (digital elevation model) maps, The method using hydraulic conductivity values applied onto groundwater-level contours turned out to be the more reliable approach for the Dae-jeong watershed in Jeju Island.
The efficiencies of Gang-Byeon sewage treatment facilities, which are based on GPS-X modelling, were analysed and used to design recycle water treatment processes. The effluent of an aeration tank contained total kjeldahl nitrogen (TKN) of 1.8 mg/L with both C-1 and C-2 conditions, confirming that most ammonia nitrogen (NH3 +-N) was converted to nitrate nitrogen (NO3 --N). The concentrations of NH3 +-N and NO3 --N were found to be 222.5 and 227.2 mg/L, respectively, with C-1 conditions and 212.2 and 80.4 mg/L with C-2 conditions. Although C-2 conditions with higher organic matter yielded a slightly higher nitrogen removal efficiency, sufficient denitrification was not observed to meet the discharge standards. For the total nitrogen (T-N) removal efficiency, the final effluent concentrations of T-N were 293.8 mg/L with biochemical oxygen demand (BOD) of 2,500 mg/L, being about 1.5 times lower than that (445.3 mg/L) with BOD of 2,000 mg/L. Therefore, an external carbon source to increase the C/N ratio was required to get sufficient denitrification. During the winter period with temperature less than 10 , the denitrification efficiency was dropped rapidly even with a high TKN concentration (1,500 mg/L). This indicates that unit reactors (anoxic/aerobic tanks) for winter need to be installed to increase the hydraulic retention time. Thus, to enhance nitrification and denitrification efficiencies, flexible operations with seasons are recommended for nitrification/anoxic/denitrification tanks.
The re-emission of mercury (Hg), as a consequence of the formation and dissociation of the unstable complex HgSO3, is a problem encountered in flue gas desulphurization (FGD) treatment in coal-fired power plants. A model following a pseudo-second-order rate law for Hg2+ reduction was derived as a function of [SO32-], [H+] and temperature and fitted with experimentally obtained data to generate kinetic rate values of (0.120 ± 0.04, 0.847 ± 0.07, 1.35 ± 0.4) mM-1 for 40°, 60°, and 75℃, respectively. The reduction of Hg2+ increases with a temperature increase but shows an inverse relationship with proton concentration. Plotting the model-fitted kinetic rate constants yields ΔH = 61.7 ± 1.82 kJ mol-1, which is in good agreement with literature values for the formation of Hg0 by SO32-. The model could be used to better understand the overall Hg2+ re-emission by SO32- happening in aquatic systems such as FGD wastewaters.
Based on the study of LOD for BIM when doing structural modeling. Divide and standards LOD criteria And investigates the characteristics of property which have to involve in structural analysis
Submerged concrete is subjected by water pressure. Unfortunately, there is a definite lack of well-established research to deal with the effect of permeability on chloride penetration in concrete. This study developed new modeling to predict chloride penetration in submerged concrete subjected to various water pressures.
본 연구에서는 시나리오 기반의 홍수위험도를 산정하기 위해 하천-제내지 통합수리 해석모형이 적용되었다. 적용대상 유역으로 낙동강 및 금호 강이 위치한 대구 성서공단 인근을 선정하여 하천홍수 발생으로 인한 시간별 범람수심 및 범람유속을 산정하였다. 하천-제내지 통합수리해석에 의 한 2차원 범람해석은 100년/200년 빈도 신뢰구간 상한치(97.5%)에 의한 제방월류 시나리오와 100년/200년 빈도 신뢰구간 평균치(50%)에 의한 파제 시나리오로 구성하여 수행되었다. 또한 제내지 범람에 의한 위험도 산정을 위해 2차원 홍수범람도로부터 예측된 각 절점에 대한 최대 침 수심 및 유속에 대한 정보를 이용하여 등급화를 실시하였다. 본 연구결과는 제방월류 및 파제에 따른 제내지의 비상대처계획(EAP) 수립에 정량적 인 근거자료로 제시하는데 매우 유용할 것으로 사료된다
The initial and boundary conditions are important factors in regional chemical transport modeling systems. The method of generating the chemical boundary conditions for regional air quality models tends to be different from the dynamically varying boundary conditions in global chemical transport models. In this study, the impact of real time Copernicus atmosphere monitoring service (CAMS) re-analysis data from the modeling atmospheric composition and climate project interim implementation (MACC) on the regional air quality in the Korean Peninsula was carried out using the community multi-scale air quality modeling system (CMAQ). A comparison between conventional global data and CAMS for numerical assessments was also conducted. Although the horizontal resolution of the CAMS re-analysis data is not higher than the conventionally provided data, the simulated particulate matter (PM) concentrations with boundary conditions for CAMS re-analysis is more reasonable than any other data, and the estimation accuracy over the entire Korean peninsula, including the Seoul and Daegu metropolitan areas, was improved. Although an inland area such as the Daegu metropolitan area often has large uncertainty in PM prediction, the level of improvement in the prediction for the Daegu metropolitan area is higher than in the coastal area of the western part of the Korean peninsula.
This study empirically evaluates the impact of exchange rate volatility, foreign direct investment, terms of trade, inflation, and industrial production and foreign exchange reserves on Pakistani trade volume over the period of 1975-2010 using quarterly data set. The study employs financial econometrics methods such as Augmented Dickey Fuller (ADF) test GARCH (1, 1) technique and Almon Polynomial Distributed Lag (APDL) models to estimate the relationship of variables. Findings of the study are in accordance with theoretical relationships presented by Clark, Tamirisa, Wei, Sadikov, & Zeng (2004), McKenzie (1999), Dellas & Zilberfarb (1993) and Côté (1994). These findings are also in accordance with the empirical studies which support positive relationship of exchange rate volatility and exports presented by Hsu & Chiang (2011), Chit (2008), Feenstra & Kendall (1991), Esquivel & Larraín (2002) and Onafowora & Owoye (2008). Findings of the study in terms of imports are supported by the studies such as Lee (1999), Alam & Ahmad (2011) and Arize (1998). The study also recommends some very important policy prescriptions.
This study is focused on three-dimensional nonlinear finite element analysis of reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP) strips under impact loading. The validity of the model was assessed through the comparison with experimental results obtained from drop-weight impact tests of the authors. The well agreement proves the feasibility of the proposed numerical analysis method.
It's effective further to use an easy modeling to reduce an numerical analysis cost. There are three kinds for the way to model a RC(Reinforced Concrete) pier by a FE(Finite Element) modeling, using a Solid element, Plane stress element and Beam element. Pushover analysis was executed to three kinds of modeling and a model was improved to raise the validity to the modeling.
An integrated hydrodynamic model was developed by dynamic coupling based on numerical grid applied global discretization scheme for 1D channel and 2D overland domain. Interface implementation was suggested to simulate hydrodynamic interaction considering the continuity of time dependent water level/flux between channel and overland regime. A hypothetical watershed example was used to demonstrate the applicability of a coupled 1D/2D model. The results verified that the model reproduced well return flows to channel as well as the diffusion of inundation flow.
Improved measurement and structural modeling analysis of result, an improved method is very efficient. The difference of about 10~15% comes out, Improved measurement and structural modeling analysis of result, it is determined that the need for additional research, such as a change of the modeling subdivision, load contions.
In order to improve the prediction of the regional air quality modeling in the Seoul metropolitan area, a sensitivity analysis using two PBL and microphysics (MP) options of the WRF model was performed during four seasons. The results from four sets of the simulation experiments (EXPs) showed that meteorological variables (especially wind field) were highly sensitive to the choice of PBL options (YSU or MYJ) and no significant differences were found depending on MP options (WDM6 or Morrison) regardless of specific time periods, i.e. day and night, during four seasons. Consequently, the EXPs being composed of YSU PBL option were identified to produce better results for meteorological elements (especially wind field) regardless of seasons. On the other hand, the accuracy of all simulations for summer and winter was somewhat lower than those for spring and autumn and the effect according to physics options was highly volatile by geographical characteristics of the observation site.
When constructing tunnels, it is important to understand structural, geological and hydrogeological conditions. Geumgeong tunnel that has been constructed in Mt. Geumjeong for the Gyeongbu express railway induced rapid drawdown of groundwater in the tunnel construction area and surroundings. This study aimed to analyze groundwater flow system and baseflow using long-term monitoring and groundwater flow modeling around Geumgeong tunnel. Field hydraulic tests were carried out in order to estimate hydraulic conductivity, transmissivity, and storativity in the study area. Following the formula of Turc and groundwater flow modeling, the annual evapotranspiration and recharge rate including baseflow were estimated as 48% and 23% compared to annual precipitation, respectively. According to the transient modeling for 12 years after tunnel excavation, baseflow was estimated as 9,796 - 9,402 m3/day with a decreasing tendency.
Purpose – The present study examines interrelationships among antecedent factors defining consumer behavior in selecting online shopping websites.
Research design, data, and methodology – The study identified factors from existing literature and used Interpretive Structural Modeling (ISM) to propose a conceptual approach to explain consumer website selection behavior. Through extensive discussions among industry and academia experts, qualitative assessment of the relationship between various factors was determined.
Results – According to the model, eight congregating factors do not converge directly for website selection, rather, they operate following a hierarchy of influence. The ISM and MICMAC analysis reveal that information on a website and website aesthetics play key roles in influencing website selection. However, convenience and the value proposition also play very significant roles.
Conclusions – The study’s findings can help the e-commerce industry, especially online retailers. The findings can be used to enhance e-retailer ability to attract, communicate, engage, achieve, monitor, and evaluate web traffic and design appropriate strategies. The study’s prime contribution is the application of Interpretative Structural Modeling (ISM) to the field of website selection.
The extreme weather conditions negatively affect the traffic flow performance, and the change of traffic systems has significant impacts on the air pollutant emission. This study identifies the correlation between rainfall, traffic volume, travel speed and air pollution concentration (NO2 and PM10) in Seoul. We employed a path analysis using rainfall data from Korea Meteorological Administration and Seoul’s air quality and traffic monitoring data in July and August on 2014. It is found that the occurrence of rainfall decreases NO2 and PM10 concentration due to the higher washing effect, while rainfall increases NO2 and PM10 concentration via the changes in traffic volume and traffic speed. The analysis of the rainfall intensity reveals that the rainfall increases NO2 concentration due to the traffic volume increase and the traffic speed reduction if an hourly rainfall is more than 5mm. It is to note that the current model succeeds in identifying the relationship between weather conditions, traffic flow performance and air pollution in a unified and consistent framework, which can be used for better predicting the changes in air pollution concentration.
We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O’Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method “NAV” (“New Algol Variable”) using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M◉, M2=0.854M◉, M=M1+M2=1.599M◉, the orbital separation a=1.65·109m=2.37R◉ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions
When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.
To estimate water balance of Pyosun watershed in Jeju Island, a three-dimensional finite difference model MODFLOW was applied. Moreover, the accuracy of groundwater flow modeling was evaluated through the comparison of the recharge rate by flow modeling and the existing one from water balance model. The modeling result under the steady-state condition indicates that groundwater flow direction was from Mt. Halla to the South Sea and groundwater gradient was gradually lowered depending on the elevation. Annual recharge rate by the groundwater flow modeling in Pyosun watershed was calculated to 236 million m3/year and it was found to be very low as compared to the recharge rate 238 million m3/year by the existing water balance model. Therefore, groundwater flow modeling turned out to be useful to estimate the recharge rate in Pyosun watershed and it would be available to make groundwater management policy for watershed in the future.
표준 k-ε, RNG k-ω 그리고 k-ω SST 난류 모형과 VOF (volume of fluid)기법을 이용하여 사각형 광정위어를 통과하는 난류흐름의 수면 변화와 유속분포를 수치모의 하였다. 지배방정식은 2차 정확도의 유한체적기법을 이용하여 해석하였으며, 두 개의 서로 다른 격자해상도에서 계산을 수행하여 수치해석 결과의 격자 민감도를 분석하였다. 계산 결과를 Kirkgoz et al. (2008)의 실험 결과 그리고 Moss (1972) 및 Zachoval et al. (2012) 무차원화된 실험값과 비교 분석하여 적용한 수치모형의 정확도를 평가하였다. 수치모의 결과는 사각형 개수로에 설치된 광정위어 흐름의 실험결과들을 합리적으로 예측하고 있으면 적용한 난류모형에 따라서 두 개의 주요 흐름분리 영역에서 계산 결과에 차이가 있는 것으로 나타났다. 표준 k-ε 모형은 이들 두 개의 흐름분리 영역의 크기를 과소산정하고 있으며, k-ω SST 모형은 위어 전면부에서 발생하는 흐름분리 영역을 다소 과대 산정하는 것으로 나타났다. RNG k-ε 모형은 전반적으로 양호하게 두 흐름분리 영역을 예측하는 한편, k-ω SST 모형은 위어 상류부 모서리에서 발생하는 박리거품의 발생 형태를 가장 잘 예측하는 것으로 나타났다.