검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3,760

        781.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근에 요소망의 재구성이 불필요하고 균열의 가시화에 강점을 가지는 확장유한요소법(XFEM)을 이용한 균열 해석이 많이 연구되고 있지만 주로 단일재료로 이루어진 부재의 해석에 집중되어 있다. 본 논문에서는 복합재료 부재인 철근콘크리트보의 다중균열 해석에 확장유한요소법을 적용하며 그 적용성과 타당성을 살펴보았다. 확장유한요소해석 기능이 탑재된 상용해석프로그램인 ABAQUS를 사용하여 균열해석을 수행하였으며 그 결과를 실험결과와 비교하였다. 확장유한요소법에서 인접요소에 동시에 균열이 발생할 경우 균열의 불연속성이 나타나지 않은 부가자유도 잠김 현상을 발견하였고 이에 대한 원인과 그 해결방안을 제시하였다. 또한 실험결과와 유사한 다중균열 발생을 위한 모델링 기법도 제시하였다. 확장유한요소법을 이용한 해석결과는 실험결과와 유사한 균열 양상 및 균열 간격을 보여 주었으며 하중-변위 관계에 있어서도 실험에 근접한 결과를 보여 주었다.
        4,000원
        782.
        2016.04 구독 인증기관 무료, 개인회원 유료
        Recently, researches of concrete performance improvement are increased in the advanced countries. Most nano material research is analyzed by experiment. This study performs a numerical analysis used by tensile strength of MWCNT and nano continuum theory, so effect on the performance improvements of nano mortar is analytically confirmed. Preceding researches about experimental result of flexural strength by Chan and Andrawes are comparative verified with result of multi-scale finite element modeling. In addition, parametric studies were conducted to investigate the effect of the ratio of width and the ratio of height on the behavior of proposed finite element modeling by nonlinear finite element analyses.
        3,000원
        783.
        2016.04 구독 인증기관 무료, 개인회원 유료
        Concrete has been widely used for material of bridge girder. However, Concrete is considered as inefficient material for long-span girder. Because it has low material strength compared with those of steel girder, huge cross sectional area are required to have same strength of steel girder bridges. UHPC(Ultra High Performance Concrete) as new material is developed to supplement this weakness of concrete. UHPC has high compressive strength and show softness behavior due to it is reinforced by fiber. If UHPC has no any reinforcement for shear, diagonal tension crack failure is dominant like normal concrete. So, reinforcement for shear is essential and prestress is efficient method of reinforcement for UHPC due to high compressive strength. However, design equation for shear strength suggested by K-UHPC Certification(2012) do not consider prestress effect. Therefore, this study investigate effect of prestress for shear strength of ultra high performance concrete I-girder by using finite element analysis program
        3,000원
        784.
        2016.04 구독 인증기관 무료, 개인회원 유료
        Grouted connections have been widely used for offshore structures such as connection method of jacket and mono-pile structures. It is recommended high strength concrete for grouting between pile and sleeve because it is so rapidly hardening that helpful to fatigue strength. This study investigates axial strength of pile to sleeve grouted connections made by 130MPa of high strength concrete. Push-out test were performed to evaluate the axial strength of the grouted connections with different shear-key spacing.
        3,000원
        785.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The field application and performance of continuously reinforced concrete pavement (CRCP), constructed by using the mechanical tube-feeding method, are evaluated in this study. METHODS: The location of the rebar was evaluated by using the MIRA system. The early-age CRCP performance was evaluated via visual survey, in which the crack spacing and crack width were examined. RESULTS: The location of longitudinal reinforcing bars was evaluated via MIRA testing and the results showed that the longitudinal rebars all lie within a given tolerance limit (±2.5 cm) of the target elevation. In addition, owing to the low temperature when the concrete was pured, the crack spacing in the Dae-Gu direction is slightly wider than that of the Gwang-Ju direction. Almost all of the crack spacings lay within the range of 1.0 m~3.0 m. A crack width of <0.3 mm was measured at the pavement surface. However, as revealed by the field survey, the crack spacing was not correlated with the crack width. CONCLUSIONS : In CRCP constructed by using the mechanical tube-feeding method, almost all of the longitudinal reinforcing bars lay within the tolerance limit (2.5 cm) of the target elevation. The concrete-placing temperature affects the crack spacing, owing to variations in the zero-stress temperature. Crack survey results show that there is no correlation between the crack spacing and crack width in CRCP.
        4,000원
        786.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The behavior of a concrete pavement in a tunnel was investigated, based on temperature data obtained from the field and FEM analysis. METHODS: The concrete pavement in a tunnel was evaluated via two methods. First, temperature data was collected in air and inside the concrete pavement both outside and inside the tunnel. Second, FEM analysis was used to evaluate the stress condition associated with the slab thickness, joint spacing, dowel, and rock foundation, based on temperature data from the field. RESULTS : Temperature monitoring revealed that the temperature change in the tunnel was lower and more stable than that outside the tunnel. Furthermore, the temperature difference between the top and bottom of the slab was lower inside the tunnel than outside. FEM analysis showed that, in many cases, the stress in the concrete pavement in the tunnel was lower than that outside the tunnel. CONCLUSIONS : Temperature monitoring and the behavior of the concrete pavement in the tunnel revealed that, from an environmental point of view, the condition in the tunnel is advantageous to that outside the tunnel. The behavior in the tunnel was significantly less extreme, and therefore the concrete pavement in the tunnel could be designed more economically, than that outside the tunnel.
        4,000원
        787.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper investigates behavior and performance of concrete pavement in tunnel based on temperature data from field. METHODS : In this study, there are 4 contents to evaluate concrete pavement in tunnel, First, Comparison for distress was conducted at outside, transition, and inside part of tunnel. Secondly, temperature data was collected in air and inside concrete pavement in outside and inside tunnel. Thirdly, FEM analysis was performed to evaluate stress condition, based on temperature data from field. Finally, performance prediction was done with KPRP program. RESULTS: From the distress evaluation, failure of inside tunnel was much less than it of outside tunnel, Temperature change in tunnel was less than out side, and also it was more stable. According to result of FEM analysis, both curling stress status of inside tunnel was lower than it of outside tunnel. Based on KPRP program analysis, performance of inside tunnel was longer than outside. CONCLUSIONS : Through all study about behavior and performance of concrete pavement in tunnel, condition in tunnel has more advantages from environmental and distress point of view. Therefore, performance of inside tunnel was better than outside.
        4,000원
        788.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This guidance purpose is setting Safety Health work instruction for prevent accident such as falling from heights work, collapse and trapped under the heavy equipment and Sediment collapse during retaining wall work by unsder the Industry Safety and Health rules.
        4,000원
        790.
        2016.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 월성 중₩저준위방사성폐기물 처분시설의 내구성 및 한계수명을 예측하였다. 처분시설은 6개의 사일로로 구 성되어 있으며 지하수 포화대에 위치하고 있어 주변 지하수와 화학적 침식 등에 의한 열화에 노출되어 있으며, 장시간이 흐 르면 수리적 방벽으로서의 역할을 상실할 것으로 예상된다. 각각의 인자에 대한 열화시간을 평가한 결과 황산염 및 마그네 슘에 의한 콘크리트 열화속도는 1.308×10-3 cm/yr로 48,000 년 이상인 것으로 나타났으며, 수산화칼슘 침출에 의한 영향은 1,000 년의 기간 경과에서 수산화칼슘 유출 깊이는 1.5 cm이하로 상당히 오랜 시간이 소요되는 것으로 나타났다. 마지막으 로 염해에 의한 철근 부식의 경우 철근 부식개시기간이 1,648 년으로, 최종적으로 구조물이 한계수명 상태에 도달하는 시간 은 2,288 년인 것으로 예측되어 가장 민감한 인자로 평가되었다.
        4,000원
        791.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bond stress between cast-in-place ductile fiber reinforced cementitious composites and CFRP plank were experimentally analyzed. As failure shape, the mixture of failure between CFRP plank and epoxy, and failure between concrete and epoxy was shown. In case of RFCON from the suggested simple bond slip relationship, the maximum average bond stress was 5.39MPa, the initial slope was 104.09MPa/mm, and the total slip length was 0.19mm. PPCON showed the maximum average bond stress of 4.31MPa, the initial slope of 126.67MPa/mm, and the total slip length of 0.26mm, while RFCON+ appeared to have 8.71MPa, 137.69MPa/mm, 0.16mm. PPCON+ had 6.19MPa maximum average bond stress, 121.56MPa/mm initial slope, and 0.34mm total slip length. To comprehend the behavior of composite structure of FRP and concrete, local bond slip relation is necessary, and thus a simple relation is suggested to be easily applied on hybrid composite system
        4,000원
        792.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 범용유한요소해석 프로그램인 ABAQUS를 사용하여 국내에서 사용되는 콘크리트벽돌을 조적채움벽으로 가진 철근콘크리트 골조를 대상으로 유한요소해석을 실시하였다. 해석대상은 순수골조, 채움벽의 두께가 0.5B인 골조, 두께가 1.0B인 골조의 3종류이다. 철근콘크리트 골조 및 채움벽의 재료특성은 재료시험 결과로부터 구하였으나 두께가 1.0B인 채움벽의 경우 벽돌의 쌓기방법의 차이에 의해 0.5B 두께의 실험체보다 4배 정도 증가된 인장강도를 사용하였다. 유한요소해석결과는 실험을 통해 구한 하중-변위관계 및 변위각에 따른 균열양상을 상당히 정확하게 예측하였다. 유한요소해석 결과의 분석을 통해 조적채움벽과 골조사이의 접촉응력 및 골조의 전단력과 휨모멘트를 산정하였다.
        4,000원
        793.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 원심식 대형 압축기 구동용 모터 베이스 프레임의 구조해석 및 콘크리트 타설에 따른 구조안전성 평가를 수행하였다. 먼저 모터 베이스 프레임에 적용되는 네 가지 하중조건에 따른 구조해석을 진행하고 최대 비틀림 에너지 이론 및 Mohr-Coulomb 이론을 통하여 구조안전성을 평가하였다. 구조해석 결과에서 취약한 구조안전성을 나타낸 연결부 등의 불연속적인 부분에서 발생하는 국부응력에 대하여 ASME VIII Div. 2에 따른 구조안전성 평가를 적용함으로써 좀 더 합리적으로 구조안전성 평가를 수행할 수 있었다. 또한, 모터 베이스 프레임 내부에 콘크리트 타설 및 미타설에 따른 구조해석 및 ASME 구조안전성 평가를 통하여 모터 베이스 프레임의 구조안전성을 정량적으로 비교하여 콘크리트 타설로 인한 구조 안전성의 향상을 확인하였다.
        4,000원
        794.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to develop a method for improving the accuracy of analysis results obtained from a twodimensional (2-D) numerical analysis model of continuously reinforced concrete pavement (CRCP). METHODS: The analysis results from the 2-D numerical model of CRCP are compared with those from more rigorous three-dimensional (3- D) models of CRCP, and the relationships between the results are recognized. In addition, the numerical analysis results are compared with the results obtained from field experiments. By performing these comparisons, the calibration factors used for the 2-D CRCP model are determined. RESULTS : The results from the comparisons between 2-D and 3-D CRCP analyses show that with the 2-D CRCP model, concrete stresses can be overestimated significantly, and crack widths can either be underestimated or overestimated by a slight margin depending on the assumption of plane stress or plane strain. The behaviors of crack width in field measurements are comparable to those obtained from the numerical model of CRCP. CONCLUSIONS: The accuracy of analysis results from the 2-D CRCP model can be improved significantly by applying calibration factors obtained from comparisons with 3-D analyses and field experiments.
        4,200원
        795.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The use of roller-compacted concrete pavement (RCCP) is an environmentally friendly method of construction that utilizes the aggregate interlock effect by means of a hydration reaction and roller compacting, demonstrating a superb structural performance with a relatively small unit water content and unit cement content. However, even if an excellent structural performance was secured through a previous study, the verification research on the environmental load and long-term durability was conducted under unsatisfactory conditions. In order to secure longterm durability, the construction of an appropriate internal air-void structure is required. In this study, a method of improving the long-term durability of RCCP will be suggested by analyzing the internal air-void structure and relevant durability of roller-compacted concrete. METHODS: The method of improving the long-term durability involves measurements of the air content, air voids, and air-spacing factor in RCCP that experiences a change in terms of the kind of air-entraining agent and chemical admixture proportions. This test should be conducted on the basis of test criteria such as ASTM C 457, 672, and KS F 2456. RESULTS : Freezing, thawing, and scaling resistance tests of roller compacted concrete without a chemical admixture showed that it was weak. However, as a result of conducting air entraining (AE) with an AE agent, a large amount of air was distributed with a range of 2~3%, and an air void spacing factor ranging from 200 to 300 ㎛ (close to 250 ㎛) coming from PCA was secured. Accordingly, the freezing and thawing resistance was improved, with a relative dynamic elastic modulus of more than 80%, and the scaling resistance was improved under the appropriate AE agent content rate. CONCLUSIONS: The long-term durability of RCCP has a direct relationship with the air-void spacing factor, and it can be secured only by ensuring the air void spacing factor through air entraining with the inclusion of an AE agent.
        4,000원
        796.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study aims to develop a repair material that can enhance pavement performance, inducing rapid traffic opening through early strength development and fast setting time by utilizing MgO-based patching materials for repairing road pavements. METHODS : To consider the applicability of MgO-based patching materials for repairing domestic road pavements, first, strength development and setting time of the materials were evaluated, based on MgO to KH2PO4 ratio, water to binder ratio, and addition ratio of retarder (Borax), by which the optimal mixture ratio of the developed material was obtained. To validate the performance of the developed material as a repair material, the strength(compressive strength and bonding strength) and durability (freezing, thawing, and chloride ion penetration resistance) was checked through testing, and its applicability was evaluated. RESULTS : The results showed that when an MgO-based patching material was used, the condensation time was reduced by 80%, and the compressive strength was enhanced by approximately 300%, as compared to existing cement-based repair materials. In addition, it was observed that the strength (compressive strength and bonding strength) and durability (freezing and thawing, and chloride ion penetration resistance) showed an excellent performance that satisfied the regulations. CONCLUSIONS : The results imply that an emergent repair/restoration could be covered by a rapid-hardening cement to meet the traffic limitation (i.e. the traffic restriction is only several hours for repair treatment). Furthermore, MgO-based patching materials can improve bonding strength and durability compared to existing repair materials.
        4,500원
        797.
        2016.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the performance of hollow precast segmental bridge columns with reinforcement details for material quantity reduction. The proposed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. The precast segmental bridge columns provides an alternative to current cast-in-place systems. We tested a model of hollow precast segmental bridge columns under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of reinforced concrete structures. The used numerical method gives a realistic prediction of performance throughout the loading cycles for hollow precast segmental bridge column specimens investigated. As a result, proposed reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.
        4,200원
        798.
        2016.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the seismic performance of new hollow reinforced concrete (RC) bridge piers with triangular reinforcement details. The developed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of new hollow RC bridge piers with triangular reinforcement details under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of RC structures. The used numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several hollow pier specimens investigated. As a result, developed triangular reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.
        4,200원
        799.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper has proposed a reinforcing method for damaged RC columns with SRF sheets and Aramid rods. In order to verify the effectiveness and performance, two original columns and two reinforced columns with SRF sheets and Aramid rods were developed and tested under lateral cyclic displacement and a constant axial load. The test showed that the improvement of energy dissipation capacity was increased in terms of strength and ductility. In addition, an analytical modeling of the standard specimens was proposed using Response-2000 and ZeusNL program. The results of analytical and experimental studies for two standard columns were compared in terms of loading-displacement curve and energy dissipation capacity based on the nonlinear static analysis.
        4,000원
        800.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this experimental research is to evaluate the workability and strength properties of hybrid fiber reinforced concrete containing amorphous steel fiber and organic fiber. For this purpose, the hybrid fiber reinforced concrete containing amorphous steel fiber(ASF) with polyamide(PA) and polyvinyl alcohol(PVA) fiber, respectively were made according to their total volume fraction of 0.5% for water-binder ratio of 33%, and then the characteristics such as the workability, compressive strength, and flexural strength of those were investigated. It was observed from the test results that the workability and compressive strength at 7 and 28 days were decreased and the flexural strength at 7 and 28 days was increased with increasing ASF and decreasing organic fiber.
        4,000원