검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 642

        81.
        2022.05 구독 인증기관·개인회원 무료
        The conventional research trend on spent fuel was safety analysis based on mechanical perspective. Analysis of spent fuel cladding is based on the temperature of cladding and pressure inside cladding. To improve fuel cladding analysis, precise and accurate thermal safety evaluation is required. In this study a database which is about thermal conductivity and emissivity for the thermal modeling was established for a long-term safety analysis of spent fuel. As a result, we confirmed that the thermal conductivity of zirconium hydride was not accounted in conventional model such as FRAPCON and MATPRO. The conductivity of zirconium and its oxide was evaluated only as a function of temperature. However, the behavior of heat conductivity and emissivity is determined by the change of the material properties. The material properties depend on the microstructural characteristic. It can be seen that this conventional approach does not consider the microstructure change behavior according to vacuum drying process or burn-up induced degradation phenomena. To improve the thermal properties of spent nuclear fuel cladding, the measurement experiments of heat conduction and emissivity are required according to spent fuel experience and status such as the number of vacuum drying, cooling rate, burn up, hydrogen concentration and oxidation degree. In previous domestic reports and papers, we found that relative data between thermal properties and spent fuel experience and status does not exist. Recently, in order to understand the failure mechanism of hydrogen embrittlement, many studies have been conducted by accounting and spent fuel experience and status in a mechanical perspective. If microstructure information could be obtained from these studies, the modeling of thermal conductivity and emissivity will be possible indirectly. According to a recent abroad paper, it was confirmed that the thermal conductivity decreased by about 30% due to irradiation damage. The radiation damage effects on thermal conductivity also has not been studied in zirconium oxide and hydride. These un-revealed phenomena will be considered for the thermal safety model of spent fuel.
        82.
        2022.05 구독 인증기관·개인회원 무료
        A long-term cooling effect on hydride reorientation of a cladding tube can affect the integrity of spent nuclear fuel transportation and long-term storage. In this study, experimental setup for investigating the degree of radial reorientation of hydrides in the circumferential direction during the long-term cooling was established. The experimental setup was designed to be simplified since the long-term evaluation requires a long term period such as 12, 18 and 24 months when the cladding tube specimen is gradually cooled down from 400°C to 100°C. For the test, hydrogen-charged specimens of 100 ppm, 200 ppm, and 500 ppm were prepared. The specimen was sealed with fixtures and check valve, and was pressurized up to 90 Mpa. To heat the specimen, a box-type furnace was used while the temperature of the specimen was measured from thermocouples attached to the specimen. After the heat treatment, the long-term cooling was performed by developing temperature control program to investigate several cooling rate conditions of the specimen. As a reference case, microstructure and brittle property of the hydrogen-charged specimens of 100 ppm, 200 ppm, and 500 ppm without the long-term cooling was observed. In the case of the hydrogen content, it was uniformly distributed in circumferential direction although it was non-uniform in the axial direction. In the case of the brittle property, a compression test was performed. For the future work, the microstructure and brittle property of the hydrogencharged specimens after the several long-cooling conditions were investigated. Then, the degree of radial reorientation of hydrides in the circumferential direction during the long-term cooling was studied.
        83.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        초고층 건물에서 수평변위 제어와 수직부재에서 발생하는 부등축소에 대한 검토가 필수적이다. 이러한 부등축소는 비구조요소의 사용성과 구조요소의 안전성에 대해 문제를 야기할 수 있다. 따라서 이 연구에서는 120층 규모의 철근콘크리트 주거용 초고층 건물에 대해 시공단계해석을 수행하여 각 수직부재의 부등축소량을 비교하고 콘크리트의 장기거동의 영향을 분석하였다. 이를 위해 영향요 인에 따라 축소량을 탄성축소량, 크리프축소량, 건조수축축소량으로 구분하여 검토하였으며 최대 절대축소량에 대한 지배적 요인을 분석하였다. 또한, 입주완료 후 30년에서 발생한 부등축소량에 대해 사용성 검토를 진행하였으며, 구조요소에 대해 설계단계와 시공 단계의 부재력을 비교하여 분석하였다.
        4,200원
        88.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, the results of an intensive field survey of a composite pavement applied to an expressway in Korea are analyzed. The results are intended to be used as basic data for evaluating the composite pavement and for preparing quality control measures through a review and analysis of the change in the state of the tensile bonding strength of the composite pavement. METHODS : To evaluate, repeated field coring and indoor tensile bonding strength evaluations are conducted for five years, and the commonality evaluation of pavement using pavement condition investigation equipment is conducted annually. RESULTS : The results of this study show that the degree of reflective crack generation varies depending on the type of concrete pavement and type of asphalt mixture applied to the intermediate layer, and that the CRCP composite pavement exhibits better initial commonality than the JCP composite pavement. In addition, it is confirmed that the composite cross-section pavement section with MASTIC applied as an intermediate layer shows excellent adhesion performance between the lower concrete layers from the beginning of construction in all sections, as well as satisfied the quality control standards for good pavement and tensile adhesion even after approximately five years of public use. CONCLUSIONS : Based on a follow-up survey of the composite pavement testing sections, it is confirmed that the section constructed with the MASTIC intermediate layer and CRCP satisfies the quality control standards for good pavement conditions and tensile adhesion even after approximately five years of public use.
        4,000원
        89.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 장기요양 기관 종사자들의 감염관리에 대한 인지도와 수행도 현황조사를 통해 감염 관리 실태를 파악하여 장기요양 기관의 종사자를 위한 효율적인 감염관리 및 교육 프로그램 개선을 위해 수행되었다. 연구 대상자는 C 지역의 장기요양 기관 35곳의 종사자 134명이며 2021년 7월 12일부터 7월 30일까지 구조화된 설문지를 사용하여 자료를 수집하였으며 SPSS 22.0 program을 이용하여 자료 분석하 였다. 연구 결과 대상자의 감염관리 인지도에 영향을 미치는 요인은 종사자의 직종(F=3.181, p=.032), 감 염관리 교육 경험(F=6.372, p=.013) 이었으며 감염관리 수행도 또한 종사자의 직종(F=3.972, p=.010), 감 염관리 교육 경험(F=4.403, p=.038)이 영향을 크게 미쳤다. 대상자의 감염관리 인지도와 수행도는 양의 상 관관계가 있었다(r=.919, p<.001). 본 연구의 결과를 종합해 볼 때, 코로나-19 팬데믹 상황에서 장기요양 기관의 환자 안전을 위해서는 종사자가 감염관리 중요성을 인지하는 것뿐만 아니라 직접 감염관리 행위를 수행하는 것이 매우 중요하다. 이를 위해서는 기관의 규모에 상관없이 직종별, 교육 주제별 체계적이고 지 속적인 교육과정 마련과 감염관리체계의 질적 향상을 위한 평가 시스템의 법적 강화가 필요할 것으로 생각 한다.
        4,300원
        90.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Safe storage of spent nuclear fuel in deep underground repositories necessitates an understanding of the long-term alteration of metal canisters and buffer materials. A small-scale laboratory alteration test was performed on metal (Cu or Fe) chips embedded in compacted bentonite blocks placed in anaerobic water for 1 year. Lactate, sulfate, and bacteria were separately added to the water to promote biochemical reactions in the system. The bentonite blocks immersed in the water were dismantled after 1 year, showing that their alteration was insignificant. However, the Cu chip exhibited some microscopic etch pits on its surface, wherein a slight sulfur component was detected. Overall, the Fe chip was more corroded than the Cu chip under the same conditions. The secondary phase of the Fe chip was locally found as carbonate materials, such as siderite (FeCO3) and calcite ((Ca, Fe)CO3). These secondary products can imply that the local carbonate occurrence on the Fe chip may be initiated and developed by an evolution (alteration) of bentonite and a diffusive provision of biogenic CO2 gas. These laboratory scale results suggest that the actual long-term alteration of metal canisters/bentonite blocks in the engineered barrier could be possible by microbial activities.
        4,000원
        1 2 3 4 5