검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 113

        84.
        1999.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni0.5-Zn0.4-X0.1·Fe2O4의 조성에서 X를 각각 Cu, Mg, Mn으로 치환시켜 치환원소에 따른 결정구조와 형상, 입도 및 자기적 성질을 비교 분석하여고, Network Analyzer을 이용하여 Ni0.5-Zn0.4-X0.1·Fe2O4-Rubber Composite의 재료정수 및 전파흡수특성에 대하여 비교 조사하였다. 치환원소에 관계없이 동일한 결정구조와 형상 및 입도를 나타냈고, VSM 분석결과 치환원소에 관계없이 동일한 자화값을 가지며, Mg로 치환된 경우 가장 큰 보자력과 자기이력손실을 나타냈다. 또한 Mn으로 치환된 경우 가장 높은 유전손실(εr"/εr')을, Cu로 치환된 경우에는 가장 큰 자기손실(μr"/μr')을 나타냈다. 4mm의 두께로 제조한 Compos-Composite에서는 Mg로 치환된 시료가 2GHz에서 -40dB이상의 가장 우수한 전파흡수특성을 나타내었다.
        4,000원
        85.
        1999.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to investigate the possibility whether Metal Injection Molding (MIM) process could be applied to 95wt.%W-3.5wt.%Ni-1.5wt.%Fe heavy alloy in order to obtain an intricate shape. Methylcellulose was used in the injection molding for binder. was added in solvent substituting Fe powder and was doped on W-Ni premixed powder. When was added in solvent, the binder separation occurred for injection molding so that the matrix content was changed. Such problem was solved when was doped. In this study. the debinding process did not affect residual carbon content. The sintered microsouctures as addition methods of Fe element and the sintering temperature from to , which are around the temperature of liquid phase formation, were observed.
        4,000원
        86.
        1999.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Incoloy 800H, KSA (Kaeri Superalloy)-6, Inconel 600 및 Hastelloy C-276 합금의 용융염에서의 부식거동을 650~850˚C 온도범위에서 조사하였다. LiCl-Li2O혼합용융염에서의 부식은 Li2O에 의한 염기성 용해 기구에 의해 진행되며, 부식속도가 LiCl에서보다 훨씬 빠르게 나타났다. 혼합용융염 LiCl-Li2O에서는 Ni기 합금의 부식속도가 Fe기 합금보다 빠르고, Mo와 W의 함량이 높은 Hastelloy C-276이 가장 빠른 부식속도를 나타내었다. 용융염 LiCl에서는 LiCrO2의 단일 부식층이 형성되고, LiCl-Li2O 혼합용융염에서는 산화물과 Ni의 2상구조의 다공성 부식층이 형성되었다.
        4,000원
        90.
        1998.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A study on the improvement of the impact energy in 93W heavy alloy with a Ni/Fe ratio of 9/1 has been carried out as a function of heat treatment temperature. The obtained results were compared to that of the traditional alloy system in which the Ni/Fe ratio is 7/3 or 8/2. With increasing heat treatment temperature from 1150 to 125, the impact energy of the alloy with the Ni/Fe ratio of 9/1 is remarkably increased from 42 to 72 J, which is higher than that of traditional alloy, up to 118 and then saturated. Fracture mode was also changed from brittle W/W boundary failure to W cleavage. The temperature showing the dramatic shrinkage by dilatometric anaysis of the heavy alloy with Ni/Fe ratio of 9/1 was found to be 1483 , which is higher than that (146) of the heavy alloy with Ni/Fe ratio of 7/3. Auger Electron Spectroscopy showed that the segregation of impurities, such as S, P, and C in W/W grain boundary was considerably decreased with increasing heat treatment temperature from 1150 to l18. From the above results, it was found that the impurity segregation in W/W grain boundary played an important role on the decrease of impact properties, and the heat treatment temperature should be appropriately chosen, as considering the Ni/Fe ratio of the alloy, in order to get good impact properties.
        4,000원
        91.
        1998.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of Mn on the densification and the microstructural change in W heavy alley was investigated with adopting the improved Mn-adding method. In order to avoid the pore formation problems associated with Mn powder mixing to the other constituent powders, Mn was added afterwards to the sintered heavy alloy; Mn powder was spread homogeneously on the surface of the sintered heavy alloy compact, and this Mn powder contained specimen was resintered at the same sintering temperature. As expected, the resintered specimen showed the pore free microstructure because Mn was reduced separately from the other constituent elements. It was also founded that W grains grew rapidly at the initial stage of resintering treatment due to the activated reprecipitation of the excess W atoms substituted by Mn atoms, but the growth rate of W grains was slowly lowered with the prolonged sintering time, especially, compared to the Mn free heavy alloy. Such a retardation of grain growth should be attributed to the decreased W solubility in the Mn contented matrix phase. Furthermore, Mn addition resulted in the decrease of contiguity by improving the wetting between matrix phase and W grain.
        4,000원
        92.
        1997.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        LI2형 결정구조를 갖는 Ni-20at.%AI-10at%Fe 금속간화합물에 boron, zirconium 과 hafnium을 최고 0.5at.% 까지 첨가하여 항복강도, 연성, 파괴 등 기계적 성질의 변화를 인장시험과 X선분석 및 XPS분석 등을 통하여 관찰하였다. Ni-20at.% AI-10at.% Fe금속간화합물에 boron을 첨가하였을 때는 연신율의 현저한 증가가 나타났으나 zirconium이나 hafnium첨가의 경우에는 별다른 효과가 나타나지 않았다. Ni-20at.%AI-10at%Fe 금속간화합물의 경우, boron의 양이 증가할수록 인장연신율이 증가하였으며 0.1at.%의 boron을 첨가한 경우 최고 48.5%의 상온인장연신율을 나타내었다. 첨가물을 넣지 않은 경우와 zirconium과 hafnium을 첨가한 경우, 파괴모드는 입계파괴의 형태를 나타내었으나 boron을 첨가한 경우에는 파괴모드가 입계파괴에서 입내파괴로 변화되었다. XPS분석을 통하여 boron이 입계에 편석된 것을 관찰할 수 있었으며 이는 이미 제시된 여러가지 해석들과 일치하는 결과이다. 이로부터 boron의 첨가에 따른 인장연신율의 증가는 boron의 입계편석거동과 관련이 있음을 알 수 있다.
        4,000원
        93.
        1997.06 구독 인증기관·개인회원 무료
        The effect of alloying mode and porosity on the axial tension-tension fatigue behavior of a P/M steel of nominal composition Fe-4w/o Ni-1.5w/o Cu-O.5w/o Mo-O.5w/o C has been evaluated. Alloying modes utilized were elemental powder mixing, partial alloying(distaloy) and prealloying by water atomization; in each case the carbon was introduced as graphite prior to sintering. Powder compacts were sintered(/30 min.) in 7Sv/o /25v/o to densities in the range 6.77-7.2 g/. The dependence of fatigue limit response on alloying mode and porosity was interpreted in terms of the constituent phases and the pore and fracture morphologies associated with the three alloying modes. For the same nominal composition, the three alloying modes resulted in different sintered microstructures. In the elemental mix alloy and the distaloy, the major constituent was coarse and fine pearlite, with regions of Ni-rich ferrite, Ni-rich martensite and Ni-rich areas. In contrast, the prealloy consisted primarily of martensite by with some Ni-rich areas. From an examination of the fracture surfaces following fatigue testing it was concluded that essentially all of the fracture surfaces exhibited dimpled rupture, characteristic of tensile overload. Thus, the extent of growth of any fatigue cracks prior to overload was small. The stress amplitude for the three alloying modes at 2x was used for the comparison of fatigue strengths. For load cycles <3x, the prealloy exhibited optimum fatigue response followed by the distaloy and elemental mix alloy, respectively. At load cycles >2x, similar fatigue limits were exhibited by the three alloys. It was concluded that fatigue cracks propagate primarily through pores, rather than through the constituent phases of the microstructure. A decrease in pore SIze improved the S-N behavior of the sintered steel.
        94.
        1996.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ni를 Cd로 대치시켜 세라믹 소결법으로 합성한 Ni0.8Cd0.2Fe2O4 의 X-ray 회절선을 측정하여 구조를 확인하고, 형성된 결정체의 격자 상수를 조사하였다. 이 시료의 Mossbauer 스펙트럼을 80K-900K의 온도 영역에서 측정 분석하여 Mossbauer parameter의 온도 의존성과 Fe 이온에 대한 자료를 얻고, 이 자료를 토대로 Ni0.8Cd0.2Fe2O4 의 자기 전이 현상과 Curied 온도 Tc와 격자 비열 및 Debye 온도와 같은 물성을 조사하였다.
        4,000원
        98.
        1996.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect ofgas sintering atmosphere on the carbon content and mechanical properties during the metal injection molding process of carbonyl iron-nickel powder was studied. The carbon content of the specimen after debinding in the pureatmosphere appeared 0.78 wt%. After showing the maximum value of 1.48 wt.% in the debinding atmosphere of 10%gas mixture, the carbon content of the debinded specimen decreased gradually with increasing thecontent in thegas mixture. The carbon contents of the sintered specimen were 0.46~0.63wt% in Na gas atmosphere, while they appeared extremely low above 40%gas atmosphere. The relative sintered density increased abruptly from 88~90% to 93~96% with the addition of Ni, while the density nearly unchanged above 2% Ni addition. The sintered density increased with increasing the fraction ofgas mixture. Tensile strength and hardness increased, and elongation decreased with increasing carbon and Ni content. In spite of high carbon content of 0.63 wt%, the superior elongation value of 10% was shown.
        4,000원
        99.
        1995.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of Mn and Co additions up to 0.6 and 2.0 wt% respectively and the amount of cold-rolled reduction on the thermal expansion coefficient (TEC) of powder rolled Fe-Ni Invar strips were investigated. The compacted strips were sintered, homogenized and cold-rolled to the final thickness of 0.8 mm, 0.65 mm and 0.4 mm. All the strips reached full density except the case of 0.8 mm sample which has a very few porosities. The interstitials which are well known to increase TEC were minimized to the level of 10 rpm C,5 and N,0 by the processing. TEC was found to decrease by increasing the cold reduction. The Mn content had little effect on the TEC. But in Fe-Ni-Co system, TEC decreased with Co content up to 0.4 wt% and then increased, yielding the minimum value of at 0.4 wt% Co. This value is much lower than that of commercial Invar product. Such effect of Co is considered to be related with the maxiumum spontaneous- magnetostriction effect.
        4,000원
        1 2 3 4 5