PURPOSES : This study is to construct the regression models of drainage asphalt concrete specimens and to provide the appropriate coefficients of hydraulic conductivity prediction models. METHODS: In terms of easy calculation of the hydraulic conductivity from porosity of asphalt concrete pavement, the estimation model of hydraulic conductivity was proposed using regression analysis. 10 specimens of drainage asphalt concrete pavement were made for measurement of the hydraulic conductivity. Hydraulic conductivity model proposed in this study was calculated by empirical model based on porosity and the grain size. In this study, it shows the compared results from permeability measured test and empirical equation, and the suitability of proposed model, using regression analysis. RESULTS: As the result of the regression analysis, the hydraulic conductivity calculated from the proposal model was similar to that resulted from permeability measured test. Also result of RMSE (Root Mean Square Error) analysis, a proposed regression model is resulted in more accurate model. CONCLUSIONS: The proposed model can be used in case of estimating the hydraulic conductivity at drainage asphalt concrete pavements in fields.
본 논문에서는 페러데이 법칙을 이용한 진동발전 장치를 지하철의 자갈도상과 콘크리트 도상의 분류에 따른 기전력 량을 분석 하였다. 지하철 2호선 서초~방배 구간의 자갈도상에서 콘크리트 도상 변경으로 동일한 전동차 운행속도로 동일 구간에서 차량운행에 의한 동특성을 분석하고 진동력발전 장치를 이용해 얻어질 수 있는 기전력 량을 분석하였다. 또한 페러데이의 법칙에 의한 유도 기전력 식에 의한 계산 기전력 량과 발전 장치에 의한 관측 기전력 량을 베이지안 회귀 분석 및 상관분석을 통하여 철도에 적용되는 모델에 대한 신뢰구간과 모델식을 각 도상별로 업데이팅하였다. 수정된 식을 이용한 기전력은 한 개의 진동발전 장치 당 콘크리트 도상에서 4mV, 자갈도상에서는 40mV의 전력을 얻을 수 있다.
풍력발전 단지의 설계시 풍력 자원 평가 과정은 필수적인 과정이다. 풍력 자원 평가를 위해 장기풍황(20년)자료를 이용하여야 하지만 장기간 관측하는 것은 어렵기 때문에 예정지의 1년 이상의 관측데이터로 평가를 실시하였다. 예정지의 단기 풍황탑(Met-Mast; Meteorology Mast) 자료를 주변의 장기관측 자료인 자동기상관측(AWS; Automatic Weather Station)데이터를 이용하여 수학적 보간법으로 예정지의 데이터를 장기 데이터로 변환한 것을 MCP(Measure-Correlative-Predict)기법이라 한다. 본 연구에서는 MCP기법 중 선형 회계방법을 적용하였다. 선택된 MCP 회귀 모델식에 따라 제주 북동부 구좌지역의 AWS데이터를 제주 북동부 한동 지역의 Met-mast 데이터에 적용하여 연간 에너지 생산량을 예측 하였다. 예정지의 단기 풍황을 이용하였을 때와 보정된 장기 풍황을 이용하여 때 연간 에너지 생산량을 비교하였다. 그 결과 연간 약 3.6 %의 예측오차를 보였고, 이는 연간 약 271 MW의 에너지 생산량의 차이를 의미한다. 풍력발전기의 생애주기인 20년을 비교 하였을 때 약 5,420 MW의 차이를 나타내었으며, 이는 약 9개월 정도의 에너지 생산량과 비슷한 수준이다. 결과적으로, 제안 된 선형 회귀 MCP 방법을 이용하는 것이 단기관측 자료를 통한 불확식성을 제거하는 합리적인 방법으로 판단된다.
Currently, R&D investment of government is increased dramatically. However, the budget of the government is different depend- ing on the size of ministry and priorities, and then it is difficult to obtain consensus on the budget. They did not establish decision support systems to evaluate and execute R&D budget. In this paper, we analyze factors affecting research funds by linear regression and decision tree analysis in order to increase investment efficiency in national research project. Moreover, we suggested strategies that budget is estimated reasonably.
플라스틱 사출 제품은 다양한 가전제품과 하이테크 제품에 널리 사용되고 있다. 그러나 현재의 치열한 경쟁적 비즈니스 환경에서 플라스틱 사출 제품 제조업자들은 고객을 만족시키면서 경쟁력을 얻기 위하여 다른 경쟁자들보다 먼저 새로운 제품을 시장에 출시하고 신제품의 개발기간을 줄이기 위한 노력을 할 여유가 부족하다. 따라서 무한경쟁의 시장에서 살아남기 위해서는 제조업자들은 시장 마켓 점유를 빠르게 올리는 것과 동시에 제품의 가격 경쟁력을 가져야 한다. 특징기반
An attempt is given to the problem of analyzing the two-way binary attribute data using the logistic regression model in order to find a sound statistical methodology. It is demonstrated that the analysis of variance (ANOVA) may not be good enough, especi
In this paper, an analysis of two-way binary attribute data is performed using the logistic regression model in order to find a sound statistical methodology. It is demonstrated that the ANOVA may not be enough, especially for the case that the proportion is very low or high. The logistic transformation of proportion data could be a help, but not sound in the statistical sense. The adoption of generalized least squares(GLS) method entails much to estimate the variance-covariance matrix. On the other hand, the logistic regression methodology provides sound statistical background in estimating model parameters and related confidence intervals. The efficiencies of estimates are ensured with a simulated data with a view to demonstrate the usefulness of the methodology.
In the ALC(Autoclaved lightweight concrete) manufacturing process, if the pre-cured semi-cake is removed after proper time is passed, it will be hard to retain the moisture and be easily cracked. Therefore, in this research, we took the research by multiple regression analysis to find relationship between variables for the prediction the hardness that is the control standard of the removal time. We study the relationship between Independent variables such as the V/T(Vibration Time), V/T movement, expansion height, curing time, placing temperature, Rising and C/S ratio and the Dependent variables, the hardness by multiple regression analysis. In this study, first, we calculated regression equation by the regression analysis, then we tried phased regression analysis, best subset regression analysis and residual analysis. At last, we could verify curing time, placing temperature, Rising and C/S ratio influence to the hardness by the estimated regression equation.
The research shows misuse cases of quantitative regression analysis used in QC circle activity and six sigma movement which presents guidelines of correct use for quality practitioners. Additionally, the qualitative regression analysis that responses nonconforming ratio of variable y, is reviewed based on misuse cases for proper use by practitioners in the field. In most cases, there are frequent errors that involve the correlation analysis or ANOVA, regardless of using quantitative regression analysis. In addition, qualitative regression analysis for the nonconforming ratio that has dependent variable of discrete and categorical data, is often applied with quantitative regression and result in ineffective quality improvement.
It is not easy to predict the shrinkage rate of a plastic injection mold in its design process. The shrinkage rate should be considered as one of the important performances to produce the reliable products. The shrinkage rate can be determined by using the CAE tools in the design produces. However, since the analysis can take minutes to hours, the high computational costs of performing the analysis limit their use in design optimization. Therefore this study was carried out to presume for mutual relation of analysis condition to get the optimum average shrinkage by regression analysis. The results shown that coefficient of determination of regression equation has a fine reliability over 87% and regression equation of average shrinkage is made by regression analysis
A probability prediction model for tropical cyclone (TC) genesis in the Northwestern Pacific area was developed using the logistic regression method. Total five predictors were used in this model: the lower-level relative vorticity, vertical wind shear, mid-level relative humidity, upper-level equivalent potential temperature, and sea surface temperature (SST). The values for four predictors except for SST were obtained from difference of spatial-averaged value between May and January, and the time average of Niño-3.4 index from February to April was used to see the SST effect. As a result of prediction for the TC genesis frequency from June to December during 1951 to 2007, the model was capable of predicting that 21 (22) years had higher (lower) frequency than the normal year. The analysis of real data indicated that the number of year with the higher (lower) frequency of TC genesis was 28 (29). The overall predictability was about 75%, and the model reliability was also verified statistically through the cross validation analysis method.
Government evaluate annually a performance of government's R&D(Research & Development) and decide a budget and progress. So, a performance target setting of R&D is very important at the planning, The basic performance target setting of railroad R&D is clear. However, a scientific and technological performance target setting of railroad R&D is very difficult and a reasonable level of it can not be judged. Therefore, this study will suggest a solution for a scientific and technological performance target setting of railroad R&D through regression analysis of successfully finished railroad R&D, after judging a reasonability of a scientific and technological performance through comparing railroad R&D with the other R&D.
시중 즉석 면류의 관능적 성질과 back extrusion test 데이터에 대하여 partial least square regression(PLSR)을 실시하였다. 즉석유탕면 8종과 즉석비유탕면 2종에 대한 관능적 속성으로서 경도(A), 탄성(B), 껄끄러운 정도(C), 이에 박히는 정도(D), 굵기감(E)를 검사하였고, 실험 데이터로 힘-변형 곡선 전체를 사용하였다. PLSR의 회귀계수는 힘-변형 곡선의 압착단계, 항복단계, 압출단계로 크게 구분되어 각 관능속성에 대한 특유의 양 또는 음의 효과를 나타냈다. PLSR의 상관계수는 E>D>A>B>C, 오차(root mean square error of prediction expressed in sensory units)는 D>C>E>B>A, 예측능(relative ability of prediction)는 D>C>E>B>A 로 나타나 종합적으로 ‘이에 박히는 정도’가 PLSR의 적용에 가장 우수하게 나타났다. ‘경도’는 예측능은 낮았지만 상관성은 높아서 시료간 순위의 결정에 합당하게 평가되었다.
In continuous review inventory model, (Q, r) system, order quantity(Q) and reorder point(r) should be determined to calculate inventory-related cost that consists of setup, holding, and penalty costs. The procedure to obtain the exact value of Q and r is
본 연구의 목적은 사고위치별(유입부, 유출부, 교차로내 및 횡단보도) 로지스틱 회귀 교통사고 모형을 개발하는 것이다. 충북지방경찰청의 2004~2005년도 사고 자료와 현장조사 자료를 근거로, 교통사고와 관련된 기하구조 요소, 환경 요소 등이 분석되었다. 개발된 모형은 카이제곱 p 값은 0.000 그리고 Nagelkerke R2값 0.363~0.819로 모두 통계적으로 유의한 것으로 분석된다. 개발된 모형의 공통 사고요인은 교통량, 횡단거리 및 좌회전전용차로이며, 특정변수는 교차로내 사고모형의 부도로 교통량, 그리고 횡단보도 사고모형의 주도로 U턴인 것으로 나타나고 있다. Hosmer & Lomeshow 검정은 유입부를 제외한 모형들은 p값이 0.05보다 크기 때문에 통계적으로 적합한 것으로 평가된다. 또한 정분류율 결과는 모든 모형식이 73.9% 이상으로 높은 예측력을 보이는 것으로 분석된다.
Ultra-high voltage transformer industry has characteristic of small quantity batch production system by other order processing unlike general mass production systems. In this industry, observance of time deadline is very important in market competitive