검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 113

        101.
        2014.11 KCI 등재 서비스 종료(열람 제한)
        In this paper, a new mobile robot, so called a rollerbot, is presented, which has single body and rugby-ball shaped roller wheel. A rollerbot has single point contact on ground and low energy consumption in motion because of the reduced friction. By changing center of mass using a balancing weight, a rollerbot is able to get steering force. The vertical position of mass center of the rollerbot in this paper is designed to lie inside radius of the roller wheel, so that to have stable equilibrium position. Thus, the posture and the steering control of the rollerbot can be easily done by changing the center of mass. Kinematics of the rollerbot is derived by transformation of differential motion in this paper.
        102.
        2014.02 KCI 등재 서비스 종료(열람 제한)
        Odometry using wheel encoders is one of the fundamental techniques for the pose estimation of wheeled mobile robots. However, odometry has a drawback that the position errors are accumulated when the travel distance increases. Therefore, position errors are required to be reduced using appropriate calibration schemes. The UMBmark method is the one of the widely used calibration schemes for two wheel differential drive robots. In UMBmark method, it is assumed that odometry error sources are independent. However, there is coupled effect of odometry error sources. In this paper, a new calibration scheme by considering the coupled effect of error sources is proposed. We also propose the test track design for the proposed calibration scheme. The numerical simulation and experimental results show that the odometry accuracy can be improved by the proposed calibration scheme.
        103.
        2013.05 KCI 등재 서비스 종료(열람 제한)
        This paper presents interaction force control between a balancing robot and a human operator. The balancing robot has two wheels to generate movements on the plane. Since the balancing robot is based on position control, the robot tries to maintain a desired angle to be zero when an external force is applied. This leads to the instability of the system. Thus a hybrid force control method is employed to react the external force from the operator to guide the balancing robot to the desired position by a human operator. Therefore, when an operator applies a force to the robot, desired balancing angles should be modified to maintain stable balance. To maintain stable balance under an external force, suitable desired balancing angles are determined along with force magnitudes applied by the operator through experimental studies. Experimental studies confirm the functionality of the proposed method.
        105.
        2011.09 KCI 등재 서비스 종료(열람 제한)
        In this paper new enhanced post-process predicting the speaker's intention was suggested to implement the real-time control module for ship's autopilot using speech recognition algorithm. The parameter was developed to predict the likeliest wheel order based on the previous order and expected to increase the recognition rate more than pre-recognition process depending on the universal speech recognition algorithms. The values of parameter were assessed by five certified deck officers being good at conning vessel. And the entire wheel order recognition process were programmed to TMS320C5416 DSP so that the system could recognize the speaker's orders and control the autopilot in real-time. We conducted some experiments to verify the usefulness of suggested module. As a result, we have confirmed that the post-recognition process module could make good enough accuracy in recognition capabilities to realize the autopilot being operated by the speech recognition system.
        106.
        2011.08 KCI 등재 서비스 종료(열람 제한)
        This paper presents the estimation of the frictional coefficient of the wheel-legged robot with hip joint actuation producing maximum tractive force. Slip behavior for wheel-legged robot is analytically explored and physically understood by identification of the non-slip condition and derivation of the torque limits satisfying it. Utilizing results of the analysis of slip behavior, the frictional coefficients of the wheel-legged robot during stance phase are numerically estimated and finally this paper suggests the pseudo-algorithm which can not only estimate the frictional coefficients of the wheel-legged robot, but also produce the candidate of the touch down angle for the next stance.
        107.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for the purpose of surveillance, reconnaissance, search and rescue, and etc. We have considered a terrain adaptive hybrid robot platform which is equipped with rapid navigation on flat floors and good performance on overcoming stairs or obstacles. Since our special consideration is posed to its flexibility for real application, we devised a design of a transformable robot structure which consists of an ordinary wheeled structure to navigate fast on flat floor and a variable tracked structure to climb stairs effectively. Especially, track arms installed in front side, rear side, and mid side are used for navigation mode transition between flatland navigation and stairs climbing. The mode transition is determined and implemented by adaptive driving mode control of mobile robot. The wheel and track hybrid mobile platform apparatus applied off-road driving mechanism for various professional service robots is verified through experiments for navigation performance in real and test-bed environment.
        108.
        2010.05 KCI 등재 서비스 종료(열람 제한)
        This paper aims to add the autonomous driving capability to the inverted pendulum system which maintains the inverted pendulum upright stably. For the autonomous driving from the starting position to the goal position, the motion control algorithm is proposed based on the dynamics of the inverted pendulum robot. To derive the dynamic model of the inverted pendulum robot, a three dimensional robot coordinate is defined and the velocity jacobian is newly derived. With the analysis of the wheel rolling motion, the dynamics of inverted pendulum robot are derived and used for the motion control algorithm. To maintain the balance of the inverted pendulum, the autonomous driving strategy is derived step by step considering the acceleration, constant velocity and deceleration states simultaneously. The driving experiments of inverted pendulum robot are performed while maintaining the balance of the inverted pendulum. For reading the positions of the inverted pendulum and wheels, only the encoders are utilized to make the system cheap and reliable. Even though the derived dynamics works for the slanted surface, the experiments are carried out in the standardized flat ground using the inverted pendulum robot in this paper. The experimental data for the wheel rolling and inverted pendulum motions are demonstrated for the straight line motion from a start position to the goal position.
        109.
        2009.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 강상자형 사교의 윤하중분배계수에 관련된 외국 설계규준들(AASHTO, AASHTO LRFD)의 문제점을 파악하고, 윤하중분배계수에 영향을 미치는 주요변수에 대한 평가를 수행하였다. 또한 다양한 강상자형 사교의 모델에 대한 유한요소해석을 수행하였으며, 그 결과를 바탕으로 회귀분석을 이용하여 강상자형사교의 윤하중분배계수를 산정하는 식을 제안하였다. 본 연구 제안식의 적용 시 기존 설계규준식의 문제점을 보완할 수 있고, 강상자형사교의 설계시 구조해석에 소요되는 시간을 절약할 수 있어, 그 타당성 및 실용성을 확인할 수 있었다.
        111.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        Abstract Many researchers are studying on humanoid robots in all over the world. However the humanoid robots are still limited in doing works like picking up objects on the ground or moving rapidly. In this study, a humanoid robot based on the wheel-driving was developed. It can operate with a human working area keeping the stability. Also, the developed robot can take up the object on the floor since it has knee(1DoF) and waist(3DoF), and do service quickly and steadily. The hardware and software structure and algorithms of the developed robot, SEROPI are introduced in this paper.
        6