검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,648

        109.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This research examines the effect of adding aluminum on the structural, phasic, and magnetic properties of CoCrFe NiMnAlx high-entropy alloys. To this aim, the arc-melt process was used under an argon atmosphere for preparing cast samples. The phasic, structural, and magnetic properties of the samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrational magnetometry (VSM) analyses. Based on the results, the addition of aluminum to the compound caused changes in the crystalline structure, from FCC solid solution in the CoCrFeNiMn sample to CoCrFeNiMnAl BBC solid solution. It was associated with changes in the magnetic property of CoCrFeNiMnAlx high-entropy alloys, from paramagnetic to ferromagnetic. The maximum saturation magnetization for the CoCrFeNiMnAl casting sample was estimated to be around 79 emu/g. Despite the phase stability of the FCC solid solution with temperature, the solid solution phase formed in the CrCrFeNiMnAl high-entropy compound was not stable, and changed into FCC solid solution with temperature elevation, causing a reduction in saturation magnetization to about 7 emu/g.
        4,000원
        110.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Republic of Korea has implemented an obligatory vaccination on major livestock breeds to prevent and eradicate nationwide foot and mouth disease (FMD) since the end of 2010. The government has executed massive serological survey to check the immune level of various herds after vaccination, and seropositive rates against FMD virus (FMDV) structural proteins can be measured to assess FMD immunity level. The purpose of this study is to investigate the FMDV serological level of every cattle breeding farm in the country and to determine whether there is a significant difference between groups classified by time, age, and management authority. A total of 5,781 serum samples was collected in 18 cattle breeding farms from 2020 to 2021, and the seropositive rates were measured using PrioCHECK FMDV Type O ELISA kit. Firstly, the cattle breeding farms were classified by which they are managed: the central government, the local government, and the private agency. Every management authority had a seropositive rate of 99.5% or higher. Secondly, the samples were divided into 6 to 12 months old, 12 to 24 months old, and 24 months or more. The 6 to 12 months old group in 2020 showed a significantly low seropositive rate of 98.1%, but it was improved by implementing the enhanced vaccination policy from 2021 to 100%. In summary, there are considerably high seropositive rates including all groups with time, age, and by which they are managed, which means the FMD vaccination in cattle breeding farms is well-managed.
        4,000원
        111.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, we deal with the feasibility of structural topology optimization for beam designs using retrofits that optimally allocates the reinforcement to the web under the condition that designers set bolt regions for H-beams of different dimensions. Mean compliance or minimal strain energy is considered for the optimization. Volume fraction is given to the design space to assign appropriate steel material quantities. The purpose of this study is to evaluate optimal shapes of stiffeners with the maximum rigidity that improves the axial and shear performance of the H-beam and to satisfy a given safety design standard of H-beam and stiffeners in case arbitrary load effect and resistances. Finally, the effectiveness of stiffness-based topology optimization on stiffeners is verified with several practical applicable examples.
        4,000원
        112.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and man-made accidents. An integrated system may also be for the entire life span of a civil structure conceived during the initial conception, developed throughout various design stages, effectively used in construction, and utilized during usage and maintenance. All these integrated systems’ essential part is the structural analysis module, which must be automated and computationally efficient so that responses may be almost immediate. The finite element method is often used for structural analysis, and for automation, many effective finite element meshes must be automatically generated for a given analysis. A computationally efficient finite element mesh generation scheme based on the r-h method of mesh refinement using strain deviations from the values at the Gauss points as error estimates from the previous mesh is described. Shape factors are used to sort out overly distorted elements. A standard cantilever beam analyzed by four-node plane stress elements is used as an example to show the effectiveness of the automated algorithm for a time-domain dynamic analysis. Although recent developments in computer hardware and software have made many new applications in integrated structural systems possible, structural analysis still needs to be executed efficiently in real-time. The algorithm applies to diverse integrated systems, including nonlinear analyses and general dynamic problems in earthquake engineering.
        4,000원
        113.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coal tar pitch is a product with high carbon content and aromatic compounds. Modified coal tar pitch is a high quality raw material for the preparation of intermediate phase pitch, needle coke, carbon microspheres, et al. In this paper, modified coal tar pitch was used as raw material, nitrogen was used as protective gas, and thermal conversion was carried out at constant temperatures (370, 390, 410, 420 °C). Polarized light microscopy, SEM, elemental analysis, FTIR spectroscopy, Raman spectroscopy and XRD diffraction combined with split-peak fitting were used to characterize the microstructures of the thermal transformation products. The results showed that the Iar and CH3/ CH2 contents of the products increased with the gradual increase of the thermal conversion temperature, and the aromatic content increased. And the higher the temperature at the same heating rate, the more the ideal graphite microcrystal content, and the defective graphite microcrystals are converted into ideal graphite microcrystals during the thermal conversion process. When the reaction temperature exceeds 390 °C, the microstructure of the thermal transformation products is anisotropic spheres, and the small spheres fuse with each other and tend to be basin-like and mosaic structure as the temperature increases.
        4,200원
        114.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 코시 모멘텀(Cauchy’s Momentum) 방정식을 이산화하기 위해 GC-LSM(Geometric Conservative Least Squares Method) 을 사용한 새로운 Meshless 방법을 제시한다. FEM(Finite Element Method) 방법이 구조해석에 널리 사용되고 있지만 무격자 기법은 격자를 이동해야 할 때 장점이 많기 때문에 개발되었다. 본 작업은 무격자 기반의 FSI(Fluid-Structure Interaction) 프로그램을 개발하 기 위한 기틀을 다지는 단계이다. 본 논문에서는 Cauchy’s Momentum 방정식을 GC-LSM을 사용하여 강형식 형태로 이산화하였고, 시간 적분을 위해 New Mark Beta 방법을 사용하였다. 개발된 기법은 1D, 2D 및 3D 벤치마킹 문제에서 검증했으며, 정적 해석 및 동적 해석 결과가 해석해와 비교시 매우 정확한 결과를 보여준다.
        4,000원
        115.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기술의 발전에 따라 전 세계적으로 교량은 대형화되고 있으며, 또한 노후 교량의 수도 급격히 증가하고 있다. 이들 대형, 노후 교량 에 대한 구조건전성 모니터링은 대형 사고 예방을 위해 필수적이다. 본 연구에서는 LoRa LPWAN 기반 무선계측시스템의 적용에 대 한 연구를 수행하였으며, 전남 신안군에 위치한 천사대교의 사장교 구간에 LoRa 무선계측시스템을 구축하였다. 교량의 주탑, 케이블, 보강거더에 대하여 계측시스템을 구축하여 기구축되어 운영 중인 유선기반 모니터링 시스템과 성능 및 경제성을 비교하여 LoRa LPWAN 기반 무선 모니터링 시스템의 대형 교량에서의 적용성을 검토하였다.
        4,000원
        116.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The construction method of scaffolding structures is different from Mortise and Tenon and bucket arch structure of traditional large woodwork. It forms an independent construction system-fixing nodes with knots, a large number of diagonal braces are used to fix shelves and the structures mostly contain X-shape and triangular shape details. Simple ones include stalls, sheds, rain sheds, altars, lamp racks etc. But the scaffolding with larger scale and more complicated structure are modeled on archways, theatres and other buildings which are used in commercial and festival activities. At present, Macao, Hong Kong, Guangdong, Sichuan, Shanxi and other places in China have retained the custom of using scaffolding structures in important festival activities, but their uses, techniques and building types are slightly different from place to place. Due to building and demolishing at any time, the construction and service cycle is short. As a result, there are almost no physical objects left. We can only deduce the use and technical characteristics of ancient scaffolding skills through the colorful building styles that have been preserved with folk activities in various parts of China, the craftsmanship handed down from generation to generation by the scaffolding guild and artisans, and the description of cultural and historical materials and the mutual corroboration of visual materials.
        4,600원
        117.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 구조물의 부분 변위값으로 전체 구조물의 변위 형상을 예측할 수 있는 인공지능 학습기법을 개발하였으며, 개발된 기술의 성능을 실험을 통해 평가하였다. 3차원 공간에서 변위 형상 및 노드 위치 좌표의 특성을 학습에 반영할 수 있는 Image-to-Image 변위 형상 학습과 위치 특징을 결합한 변위 상관 학습 방법을 제시하였다. 개발된 인공지능 학습방법의 성능을 평가하기 위해 목업 구 조 실험을 진행하였고, 3D 스캔으로 측정한 변위값과 인공지능으로 예측한 결과를 비교하였다. 비교 결과 인공지능 예측 결과는 3D 스캔 측정 결과에 비해 5.6~5.9%의 오차율을 보여 적정 성능을 보였다.
        4,000원
        118.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes a method to evaluate the structural safety of a large wide-width greenhouse structure against wind load caused by a typhoon through a fluid structure interaction analysis technique. The conventional method consisted of roughly estimating the wind load based on the relevant laws and regulations, and determining safety through structural analysis. However, since the wind load changes nonlinearly according to the wind speed distribution and wind direction around the greenhouse and the external shape of the structure, there are many uncertainties in the existing structural safety evaluation method, and it is difficult to accurately determine the design margin. In this study, a systematic method was developed to accurately calculate the wind load acting on a greenhouse structure and evaluate structural safety by considering the characteristics of wind through a fluid structure interaction analysis using coupled computational fluid dynamics and computational structural mechanics. Using the proposed method, it is possible to significantly reduce the manufacturing cost because it is possible to obtain an optimal design that reduces the over-conservative design margin while securing the structural strength of the greenhouse.
        4,000원
        119.
        2023.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.
        4,300원
        120.
        2023.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Structures of high-rise buildings are less prone to earthquake damage. This is because the response acceleration of high-rise buildings appears to be small by generally occurring short-period ground motions. However, due to the increased construction volume of high-rise buildings and concerns about large earthquakes, long-period ground motions have begun to be recognized as a risk factor for high-rise buildings. Ground motion observed on each floor of the building is affected by the eigenmode of the building because the ground motion input to the building is amplified in the frequency range corresponding to the building's natural frequency. In addition, long-period components of ground motion are more easily transmitted to the floor or attached components of the building than short-period components. As such, high-rise buildings and non-structural components pose concerns about long-period ground motion. However, the criteria (ASCE 7-22) underestimate the acceleration response of buildings and non-structural components caused by long-period ground motion. Therefore, the characteristics of buildings’ acceleration response amplification ratio and non-structural components were reviewed in this study through shake table tests considering long-period ground motions.
        4,300원