This study investigates the seismic performance of solid reinforced concrete columns with triangular reinforcement details using nonlinear seismic analysis. The developed reinforcement details are economically feasible and rational, and facilitate shorter construction periods. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several column specimens. As a result, developed triangular reinforcement details were designed to be superior to the existing reinforcement details in terms of required performance.
The single layer latticed domes have attracted many designers and researchers's attention all of the world, because these structures as spatial structure are of great advantage in not only mechanical rationality but also function, fabrication, construction and economic aspect. But single layer latticed domes are apt to occur the unstable phenomena that are called "buckling" because of the lack of strength of members, instability of structural shape, etc. In the case of latticed dome, there are several types of buckling mode such as overall buckling, local buckling, and member buckling according to the shape of dome, section type of member, the size of member, junction's condition of member and so on. There are many methods to increase the buckling strength of the single layer latticed dome, that is, with the change of geometrical shape of dome, the reinforcement of buckled member, etc. Therefore, the purpose of this study is to verify the reinforcement effect of buckled member when designers reinforce the buckled member to increase the buckling strength of single layer latticed dome with 3-way grid.
Railroad ballast materials tend to degrade due to the increase of ballast abrasion and fracture that results in decreasing the capability of shock absorption, interlocking friction, and the resistance to track irregularity. Therefore, it is necessary to establish a methodology to improve or maintain the structural condition of ballast materials which is in the middle of fouling. This study aimed to investigate the effect of reinforcement on the fouled ballast using ballast stabilizer. Field experimental program was conducted to compare the lateral ballast resistance in case of before and after application of ballast stabilizer. A series of laboratory repetitive load triaxial compression test was then performed to compare the accumulated plastic strain in case of before and after application of ballast stabilizer to the ballast materials having a different level of Fouling Index(FI). In the event of application of ballast stabilizer, the accumulated plastic strain decreased by 41.8 and 28.8 percent, respectively, when the FI was 14 and 21, which appears to indicate the ballast stabilizer is effective for the moderate level fouled ballast materials.
This study investigates the performance of hollow precast segmental bridge columns with reinforcement details for material quantity reduction. The proposed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. The precast segmental bridge columns provides an alternative to current cast-in-place systems. We tested a model of hollow precast segmental bridge columns under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of reinforced concrete structures. The used numerical method gives a realistic prediction of performance throughout the loading cycles for hollow precast segmental bridge column specimens investigated. As a result, proposed reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.
This study investigates the seismic performance of new hollow reinforced concrete (RC) bridge piers with triangular reinforcement details. The developed triangular reinforcement details are economically feasible and rational, and facilitate shorter construction periods. We tested a model of new hollow RC bridge piers with triangular reinforcement details under a constant axial load and a quasi-static, cyclically reversed horizontal load. We used a computer program, Reinforced Concrete Analysis in Higher Evaluation System Technology (RCAHEST), for analysis of RC structures. The used numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several hollow pier specimens investigated. As a result, developed triangular reinforcement details for material quantity reduction was equal to existing reinforcement details in terms of required performance.
This paper has proposed a reinforcing method for damaged RC columns with SRF sheets and Aramid rods. In order to verify the effectiveness and performance, two original columns and two reinforced columns with SRF sheets and Aramid rods were developed and tested under lateral cyclic displacement and a constant axial load. The test showed that the improvement of energy dissipation capacity was increased in terms of strength and ductility. In addition, an analytical modeling of the standard specimens was proposed using Response-2000 and ZeusNL program. The results of analytical and experimental studies for two standard columns were compared in terms of loading-displacement curve and energy dissipation capacity based on the nonlinear static analysis.
기존 구조물의 손상평가에 관한 연구는 지진 등과 같은 과도한 하중에 의한 손상을 고려하였다. 그러나 구조물은 과도한 하중없이도 장기간의 시간에 따라 염화물, 탄성화 등과 같은 이유로 노후화가 진행되어 구조성능이 저하될 수 있다. 그래서 구조물의 건전도를 효과적으로 관리하기 위해서는 노후화에 의한 구조성능 저하도 검토되어야 한다. 본 연구에서는 염화물에 의한 철근의 부식을 노후화 요인으로 고려한다. 철근부식에 의한 재료의 구조성능 저하를 고려하기 위해 부식정도에 따른 철근의 단면적, 항복강도, 파단변형률, 피복 콘크리트 강도 등을 예측한다. 이를 구조모델링에 적용하여 구조부재 및 구조물의 구조성능 저하를 분석한다. 구조부재의 구조성능을 분석하기 위해 모멘트-곡률 해석을 수행한다. 구조물 레벨의 구조성능을 고려하기 위해, 고유치해석을 통한 고유주기와 모드형상을 분석한다. 또한 비선형 정적해석을 통해 구조물의 강도와 변형성능을 분석한다.
보호관찰, 사회봉사, 수강명령 등을 통칭하는 사회내처우는 시설내처우의 교정적 효과가 근본적 한계를 드러내기 시작한 20세기초 그 한계의 대안으로 등장하였다. 우리나라는 피교정자의 능동적이고 자발적인 재사회화에 중점을 두고자 1995년 형법개정을 통하여 보호관찰을 전면적으로 확대함으로써 비로소 본격적인 사회내처우의 시대를 개막하였다. 현재 사회내처우는 다양한 형태로 폭넓게 활용되고 있다. 그런데, 그 실효성을 검증할 수 있는 완전무결한 방법이 있는지 의문이다. 다만, 사회내처우 이후 재범률에 관한 통계가 그 실효성을 가늠할 수 있는 주요한 방법이 될 수 있을 것인데, 그 분석결과는 사회내처우를 종료한 이후에도 일정의 재범률이 유지됨을 보여주고 있다. 더군다나, 최근 사회내처우의 경향은 부가적인 전자장치부착 감시처분의 영역을 확장하고 있다. 재사회화보다는 사회방위에 집중하는 모습이다. 이는 엄벌주의의 강화 경향과 맥을 같이 한다. 그러나, 이와 같은 경향은 사회내처우가 지향하여 실현하고자 하는 목적과 거리가 멀다. 전자장치부착 감시는 재사회화를 위한 사회내처우라기보다 자유의 제한을 통한 일종의 보안처분(협의의 보안처분)이기 때문이다. 일정의 재범률이 유지되는 것 역시 재사회화가 아닌 사회방위(감시)에 집중하기 때문인 것으로 설명될 수 있다. 결국, 현재 사회내처우제도는 재사회화 기능을 강화할 필요가 있다. 양질의 인적시스템 구비를 전제로 형법상 사회봉사명령·수강명령의 확대, 판결전조사제도의 의무화, 처우의 개별화, 중간제재수단의 다양화, 재범률 평가시스템의 도입 등이 필요하고 검토되어져야 한다.
This study investigates the application of a synthetic resine based net-hose system to sustain vegetated embankment slope reinforcement. The net-hose system is designated to improve water supply to the vegetation that can suffer the lack of water in case of extreme drying condition or rock slope where water supply is relatively insufficient to ensure the growth of vegetation. A series of laboratory tests were conducted to check the structural adequacy and effectiveness of net-hose system. The results indicated that the model slope equipped with net-hose system seemed to provide better water supply resulting in more vegetated areas and higher matric suction due to active water uptake capacity, which might be contributed to greater shear strength of slope surface. A limited numerical analysis was conducted to verify the effect of water uptake on vegetated root system that generally yields better slope stability.
본 논문은 넓은 보의 전단강도를 대상으로 한 실험적 평가에 대해 기술하였다. 본 논문의 실험을 통해 넓은 보에 횡방향 단면에서 GFRP 판의 보강개수와 종방향 전단보강 간격, 그리고 유효깊이가 전단강도에 끼치는 영향에 관하여 연구하였다. 총 7개의 시험체에 유공형 GFRP 판 형태로 전단보강재를 보강하여 전단성능 실험을 실시하였다. 본 논문에 기재된 전단보강재는 유공형 판 형태로 제작되어 타설 시 콘크리트의 유동성을 증가시켜 보강재와 콘크리트의 부착력을 향상시켰다. 7개 시험체의 주 변수로는 전단보강재의 횡방향 단면에 대한 판의 보강개수와 종방향 전단보강 간격, 그리고 유효깊이로 정하였다. 시험체의 균열 및 파괴 양상, 변형률과 전단강도비를 분석하였다. GFRP판으로 전단보강된 넓은 보의 전단강도는 ACI 318-11 기준으로 산정되었다. 실험의 결과를 통해 유공형 GFRP 판이 전단보강재로서 넓은 보에 효과적으로 적용됨을 확인하였다.
The purpose of this study is to investigate the behavior characteristics of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details and to provide the details and reference data. Among the numerous parameters, this study concentrates on the shape of the section, the reinforcement details and the spacing of the transverse reinforcement. Additional eight column section specimens were tested under quasi-static monotonic loading. In this study, the computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A innovative confining effect model was adopted for new hollow bridge pier sections. This study documents the testing of new hollow RC bridge pier sections with triangular reinforcement details and presents conclusions based on the experimental and analytical findings.
The purpose of this study was to investigate the performance of new hollow reinforced concrete (RC) bridge pier sections with triangular reinforcement details. The proposed triangular reinforcement details are economically feasible and rational and facilitate shorter construction periods. A model of pier sections with triangular reinforcement details was tested under quasi-static monotonic loading. As a result, proposed triangular reinforcement details was equal to existing reinforcement details in terms of required performance. In the companion paper, the parametric study for the performance assessment of new hollow RC bridge pier sections with triangular reinforcement details is performed.
This study investigates the application of net-hose system to sustain a vegetated slope reinforcement. The net-hose system is designated to improve water supply to the vegetation that can suffer the lack of water in case of extreme drying condition or rock slope where the water supply is relatively insufficient to ensure the growth of vegetation. A series of laboratoy tests were conducted to check the structural adequacy and effectiveness of net-hose net hose system. The results indicated that the model slope equipped with net-hose system seemed to provide better water supply leading to more vegetated areas and higher matric suction due to active water uptake capacity, which might be contributed to greater shear strength of slope surface. A limited numerical analysis was conducted to verify the effect of water uptake of vegetated root system that generally yields better slope stability.
This study analyzes buckling in the lower segment of a tubular steel shell that exhibits the characteristics of a 3MW wind tower with opening and reinforcement. Analytical method using parametric equations based on Eurocode 3 - Design of Steel Structures and numerical method of finite element are used to analyze the critical meridional buckling stress. ABAQUS, a finite element program, is used for the numerical method analysis. Four different cases of tubular steel tower is modeled: without door opening and without reinforcement; with door opening and without reinforcement; without door opening and with reinforcement; and with door opening and with reinforcement. Using the ABAQUS, a linear buckling analysis is done for all cases to recognize five of its buckling mode shapes and its corresponding eigenvalues. Mode shapes from the previous analysis are considered in performing the non-linear analysis using Static Riks. Buckling capacity and its trends in the localized area near the opening is investigated, tabulated and shown in illustrative charts. Moreover, comparison is made between the parametric and finite element analyses.
In this study, we classified the structures into minor-damage column (URM), moderate-damage column (URO), and severe-damage column (URS), depending on the RC column of damage degree, and reinforced columns with the UHMWPE fiber in order to perform modeling of the structures. Then, we executed a comparative analysis with the results obtained from previous studies of NRF (non-reinforced column) and URF (column with UHMWPE fiber reinforcement). The maximum strength was increased with 14.91% of URF, 14.05% of URM, 14% of URO, and 6.5% of URS on the basis of NRF and the columns with minor and moderate damages exhibited the similar stiffness as that of the URF.
Shear wall systems behave as individual wall because of openings like window and elevator cage. When coupling beams are installed in shear walls, they will have high strength and stiffness so that be less damaged by lateral loads like earthquake. However, coupling beam is difficult construction method. And arranging reinforcement of slender coupling beams are especially hard. It is because the details of coupling beam provided by ACI 318 are complex. In this paper, experiments were conducted using coupling beams with 3.5 aspect ratio to improve the details of slender coupling beams provided by ACI 318. Two specimens were proposed for this study. One specimen applied with bundled diagonally reinforcement only. Another specimen applied both bundled diagonally reinforcement and High-Performance Fiber Reinforced Cementitious Composite (HPFRCC) so that coupling beams have half of transverse reinforcement. All specimen were compared with a coupling beam designed according to ACI 318 and were evaluated with hysteretic behaviors. Test results showed that the performance of two specimen suggested in this study were similar to that of coupling beam designed according to current criteria. And it was considered that simplification of the details of reinforcement would be available if transverse reinforcement was reduced by using bundled diagonally reinforcement and HPFRCC.