검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 177

        161.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        Microwave pyrolysis of SF6 on alumina-based catalyst doped with cerium sulfate was investigated. Silicon Carbide (SiC) used as a microwave susceptor. The catalysts were characterized by X-ray diffraction (XRD) and the destruction and removal efficiency (DRE) of SF6 was evaluated by GC-TCD. We found that the optimal cerium content was 20wt% at microwave pyrolysis of SF6. The catalysts modified by cerium showed higher DRE at lower reaction temperature compared with original catalysts. The highest DRE of SF6 on CeA (20) was 80% at 600oC reaction temperature and the DRE was up to 95% when the reaction temperature over 700oC. It showed the alumina-based with cerium promotes the removal efficiency of SF6 at a mild reaction temperature. From XRD results, modified catalysts could be higher stability because of no transformation of the crystal phase after reaction.
        162.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        This paper analyzed thermal and carbonization properties of sewage sludge in fixed bed reactor and obtained following results. The heavy metal (Pb, Ni, Mn, Cr, Cu) content of Char showed the highest level at unprocessed sewage sludge, followed by carbonized sludge at 600, 400, and 500oC. It was thought to be mainly due to the yield of char rather than the influence of temperature. Also, the migration-test results of heavy metals satisfied the landfill directive in all samples, which may be possible to use it as landfill cover materials. The concentration of dioxin by changes of pyrolysis temperature was higher in the low temperature conditions and the proportion of PCDDs was higher than that of PCDFs.
        163.
        2013.06 KCI 등재 서비스 종료(열람 제한)
        This research was designed to elucidate the pyrolysis reaction characteristics of waste epoxy printed circuit board (e- PCB). The samples were pulverized after removing coppers by gravity separator. Non-isothermal pyrolysis kinetic results by Thermogravimetric Analyzer (TGA) displayed two apparent reaction regions : 1) fast degradation zone and 2) slow degradation zone. According to batch experiments, solid by-products are responsible for about 78%, while liquid and gas by-products, respectively, represent 13 and 9%. The high content of solid by-products is ascribed to that of SiO2 that is a major components of e-PCB. Liquid by-products exhibit high content of oxygen (19%) and contain the nitrogen of about 1%. It is recommended that gas, liquid, and solid by-products of waste e-PCB would not be applied directly as fuels. Instead, pyrolysis of e-PCB would be applied to recover valuable rare metals and coppers from solid by-products. Application of liquid by-products is likely to be limited due to the presence of brominated oils precursor in liquid byproducts. It is necessary to develop upgrading methods for improving the quality of liquid by-products of waste e-PCB. According to kinetic analysis and product characterization, pyrolysis reaction model of waste e-PCB is accounted for by a series reaction with two independent reactions of two resins: brominated epoxy resins and non-brominated epoxy resins. At the first-stage, two resins are independently decomposed to generate thermally stable intermediates followed by slow degradation of the intermediates to be converted into char.
        164.
        2012.05 KCI 등재 서비스 종료(열람 제한)
        바이오매스에서 얻어지는 바이오차는 토질 개량제와 탄소 격리제로 제한적인 분야에서 성공적으로 사용되고 있다. 현재 산업전반에서 CO2 에 의한 환경에 부정적인 영향을 완화시키고 지속가능성을 증진시키기 위한 연구가 활발히 진행되고 있다. 이에 본 연구에서는 고탄소 바이오차를 탄소 격리제 또는 시멘트의 혼화재로써 활용 가능성을 평가하고자 하였다. 견목재에서 얻어진 바이오차를 혼화재로 사용하여 시멘트 배합조건을 달리하면서 모타르의 압축강도, 마이크로구조, 압축강도, 유동성, 중량감소와 같은 화학적, 물리적 재료성질을 평가하였다. 또한 플리이애쉬를 사용한 모르타르의 역학적 특성과 비교 평가하였다.
        168.
        2010.12 KCI 등재 서비스 종료(열람 제한)
        The application of metal caps has been continuously increased as real life are extended. Metal caps is usually made of aluminum and polyethylene(PE) as packing. Since metal caps contain 75% aluminum on a weight basis, metal caps may be a valuable source when these were properly recovered. The recovery methods of metal caps have mechanical peeling and incineration. However these are either hard to apply in some case or environmentally unacceptable. So in this investigation, recovery method of aluminum from metal caps was investigated using pyrolysis. The result shows that pyrolysis temperature and pyrolysis time was 450℃ and 120min. respectively. Also 100% of aluminum was recovered from metal caps. Heat content of recovered oil was high enough to use as a fuel representing 7,425.0, 7,793.1, 7,583.2, 7,726.2(cal/g). Heavy metal contens in the oil were under regulatory limit indicating.
        170.
        2003.09 KCI 등재 서비스 종료(열람 제한)
        국제해사기구-해양환경보호위원회 제 46차(외교회의 결정 2001년 10월 5일)회의에서 유기주석계 방오도료 사용금지(2003년 1월 1일 선체 사용금지, 2008년 1월 1일 선체 잔존금지)에 따른 TBT함유 페인트 폐기물의 다량 발생에 대한 처리기술의 개발로 방오 도료 페인트의 최적 처리시스템을 연구하였다. 열분해 반응장치를 이용하여 TBT함유 페인트 폐기물의 열분해 특성 및 처리성능을 평가하였다. TBT함유 페인트 폐기물을 열분해 반응조에서 온도를 1000℃, 반응시간을 1시간 동안 처리했을 때 유기주석이 99% 제거되어 처리효율이 뛰어났다.
        173.
        2002.04 KCI 등재 서비스 종료(열람 제한)
        The total hydrocarbon distribution of oil products obtained from the pyrolysis of four kinds of mixtures of polyethylene-polystyrene waste has been studied by multidimensional chromatography(high performance liquid chromatography followed by capillary gas chromatography)/mass spectrometry. Saturated, unsaturated and aromatic hydrocarbons in oil products were selectively pre-separated according to structural groups by HPLC and the weight fraction of each group was estimated by analysis of each component using GC-FID response factors. The hydrocarbon distribution of aliphatic fraction consists of C5 to C25 saturated and unsaturated hydrocarbons. And that of aromatics fraction consists of benzene, toluene, xylene, styrene, propenyl benzene, naphthalene, and some of derivatives. Pyrolysis temperature did not affect the ratio of total weight fraction of aliphatic over aromatic hydrocarbon distribution in case of PS only and PE-PS mixtures (1:1 and 1:4 wt. ratio) as a feed while affected the ratio of total wt. fraction in case of PE only. The optimal temperature for the maximum oil production was 600℃ for pyrolysis of PS and 1:1 and 1:4 mixtures of PE and PS. The optimal condition for aromatic recovery was 600℃ with 1:1 mixture of PE and PS. In this condition, aromatic was produced up to 90% of total oil product. The maximum yield of toluene, xylene, styrene, and propenyl benzene were 8.6, 8.9, 51.0 and 7.4% of feed for pyrolysis PS at 700℃, respectively. However, only 1.3% naphthalene was recovered at 700℃ with 1:1 PE:PS(by wt.).
        176.
        1997.08 KCI 등재 서비스 종료(열람 제한)
        The pyrolysis reactions of atomic hydrogen with chloroform were studied in a 4 cm i.d, tubular flow reactor with low flow velocity (518 ㎝/sec) and a 2.6 ㎝ i.d. tubular flow reactor with high flow velocity (1227 ㎝/sec). The hydrogen atom concentration was measured by chemiluminescence titration with nitrogen dioxide, and the chloroform concentrations were determined using a gas chromatography. The chloroform conversion efficiency depended on both the chloroform flow rate and linear flow velocity, but did not depend on the flow rate of hydrogen atom. A computer model was employed to estimate a rate constant for the initial reaction of atomic hydrogen with chloroform. The model consisted of a scheme for chloroform-hydrogen atom reaction, Runge-Kutta 4th-order method for integration of first-order differential equations describing the time dependence of the concentrations of various chemical species, and Rosenbrock method for optimization to match model and experimental results. The scheme for chloroform-hydrogen atom reaction included 22 elementary reactions. The rate constant estimated using the data obtained from the 2.6 cm i.d. reactor was to be 8.1 × 10 exp (-14) ㎤/molecule-sec and 3.8 × 10 exp (-15) ㎤/molecule-sec, and the deviations of computer model from experimental results were 9% and 12%, for the each reaction time of 0.028 sec and 0.072 sec, respectively.
        6 7 8 9