검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 605

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we examined the effects of gamma irradiation dosage on the mycelial growth of Auricularia auriculajudae and performed analyses of fruiting body yield, growth characteristics, taste, fragrance, and mineral composition. Assessments of mycelial growth in response to gamma irradiation at different intensities revealed an enhancement in the growth of fungi exposed to irradiation at 200 Gy. Fruiting body yield was also highest at 200 Gy, followed by 800 Gy and the control group. On the basis of these observations, we subsequently applied gamma ray doses of 200 and 800 Gy to examine the effects of irradiation on fungal quality characteristics. In terms of the taste of fruiting bodies, we detected no significant differences among the control, 200 Gy, and 800 Gy groups. Contrastingly, with respect to fragrance, we found that fungi treated with 200 Gy were characterized by a pattern that differed from those of the control and other treatment groups. Furthermore, whereas we detected no significant difference among treatments with respect total dietary fiber content, calcium content was found to be higher in the treatment groups compared with the control group, with the highest content being measured in fungi exposed to 800 Gy irradiation. Copper content was confirmed to be higher in the control group, whereas there were no significant differences between the fungi irradiated with 200 and 800 Gy. Contrastingly, the highest levels of zinc were detected in response to 200 Gy irradiation, followed by 800 Gy. Collectively, our findings thus indicate that gamma irradiation can contribute to promoting increases in the fruiting body yield and mineral contents of mushrooms.
        4,000원
        2.
        2023.11 구독 인증기관·개인회원 무료
        The inorganic scintillator used in gamma spectroscopy must have good efficiency in converting the kinetic energy of charged particles into light as well as high light output and high light detection efficiency. Accordingly, various studies have been conducted to enhance the net-efficiency. One way to improve the light yield has been studied by coating scintillators with various nanoparticles, so that the scintillation light can undergo resonance on surface between scintillators and nanoparticles resulting in higher light yield. In this study, an inorganic scintillator coated with CsPbBr3 perovskite nanocrystals using dip coating technique was proposed to improve scintillation light yield. The experiment was carried out by measuring scintillation light output, as the result of interaction between inorganic scintillator coated with CsPbBr3 perovskite nanocrystals and gamma-ray emitted from Cs-137 gamma source. The experimental results show that the channel corresponding to 662 keV full energy peak in the Cs-137 spectrum shifted to the right by 14.37%. Further study will be conducted to investigate the detailed relationships between the scintillation light yield and the characteristics of coated perovskite nanoparticles, such as diameter of nanoparticles, coated area ratio and width of coated region.
        3.
        2023.11 구독 인증기관·개인회원 무료
        The occurrence of shear failure in a rock mass, resulting from the sliding of joint surfaces, is primarily influenced by the surface roughness and contact area of these joints. Furthermore, since joints serve as crucial conduits for the movement of water, oil, gas, and thermal energy, the aperture and geometric complexity of these joints have a significant impact on the hydraulic properties of the rock mass. This renders them critical factors in related industries. Therefore, to gain insights into the mechanical and hydraulic behavior of a rock mass, it is essential to identify the key morphological characteristics of the joints mentioned above. In this study, we quantified the morphological characteristics of tensile fractures in granitic rocks using X-ray CT imaging. To accomplish this, we prepared a cylindrical sample of Hwang-Deung granite and conducted splitting tests to artificially create tensile fractures that closely resemble rough joint surfaces. Subsequently, we obtained 2D sliced X-ray CT images of the fractured sample with a pixel resolution of approximately 0.06 mm. By analyzing the differences in CT numbers of the rock components (e.g., fractures, voids, and rock matrix), we isolated and reconstructed the geometric information of the tensile fracture in three dimensions. Finally, we derived morphological characteristics, including surface roughness, contact area, aperture, and fracture volume, from the reconstructed fracture.
        4.
        2023.11 구독 인증기관·개인회원 무료
        Engineered Barrier Systems (EBS) are a key element of deep geological repositories (DGR) and play an important role in safely isolating radioactive materials from the ecosystem. In the environment of a DGR, gases can be generated due to several factors, including canister corrosion. If the gas production rate exceeds the diffusion rate, pore pressures may increase, potentially inducing structural deterioration that impairs the function of the buffer material. Therefore, understanding the hydraulic-mechanical behavior of EBS due to gas generation is essential for evaluating the longterm stability of DGR. This study employed X-ray computed tomography (CT) technology to observe cracks created inside the buffer material after laboratory-scale gas injection experiments. After CT scanning, we identified cracks more clearly using an image analysis method based on machine learning techniques, enabling us to examine internal crack patterns caused by gas injection. In the samples observed in this study, no cracks were observed penetrating the entire buffer block, and it was confirmed that most cracks were created through the radial surface of the block. This is similar to the results observed in the LASGIT field experiment in which the paths of the gas migration were observed through the interface between the container and the buffer material. This study confirmed the applicability of high-resolution X-ray CT imaging and image analysis techniques for qualitative analysis of internal crack patterns and cracks generated by gas breakthrough phenomena. This is expected to be used as basic data and crack analysis techniques in future research to understand gas migration in the buffer material.
        6.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the analysis results of the simultaneous multifrequency observations of the blazar 4C +28.07. The observations were conducted by the Interferometric Monitoring of Gamma-ray Bright Active Galactic Nuclei (iMOGABA) program, which is a key science program of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN). Observations of the iMOGABA program for 4C +28.07 were conducted from 16 January 2013 (MJD 56308) to 13 March 2020 (MJD 58921). We also used γ-ray data from the Fermi Large Array Telescope (Fermi-LAT) Light Curve Repository, covering the energy range from 100 MeV to 100 GeV. We divided the iMOGABA data and the Fermi-LAT data into five periods from 0 to 4, according to the prosody of the 22 GHz data and the presence or absence of the data. In order to investigate the characteristics of each period, the light curves were plotted and compared. However, a peak that formed a hill was observed earlier than the period of a strong γ-ray flare at 43–86 GHz in period 3 (MJD 57400–58100). Therefore, we assumed that the minimum total CLEANed flux density for each frequency was quiescent flux (Sq) in which the core of 4C +28.07 emitted the minimum, with the variable flux (Svar) obtained by subtracting Sq from the values of the total CLEANed flux density. We then compared the variability of the spectral indices (α) between adjacent frequencies through a spectral analysis. Most notably, α22–43 showed optically thick spectra in the absence of a strong γ-ray flare, and when the flare appeared, α22–43 became optically thinner. In order to find out the characteristics of the magnetic field in the variable region, the magnetic field strength in the synchrotron self-absorption (BSSA) and the equipartition magnetic field strength (Beq) were obtained. We found that BSSA is largely consistent with Beq within the uncertainty, implying that the SSA region in the source is not significantly deviated from the equipartition condition in the γ-ray quiescent periods.
        5,800원
        7.
        2023.05 구독 인증기관·개인회원 무료
        Crystallographic properties of Ni-based alloys such as alloys 600, 617, and Hastelloy N, which are a candidate to be used as structural materials in Molten Salt Reactor (MSR), were studied in the temperature range of 25-1,000°C using high-temperature X-ray diffraction (HT-XRD) under an Ar atmosphere. We found that face-centered cubic Ni crystal structure at room temperature was started to be changed over 600°C in all Ni-based samples. However, the appearance of changing diffraction patterns over 600°C was different for all samples. In addition, we observed the increase in the lattice constant along the a-axis upon heating in all specimens, determined by Pawley refinement of HTXRD data.
        8.
        2023.05 구독 인증기관·개인회원 무료
        According to ISO 4037, the thickness of the inherent filtration for the radiation qualities L-40 to L- 240, N-40 to N-400, W-60 to W-300 and H-80 to H-400 shall be equivalent to 4 mm Al for matched reference radiation fields or adjusted as far as possible to 4 mm Al for characterized reference radiation fields. And for matched reference fields, the tube window must be made of beryllium and its thickness should not exceed 10 mm. In the case of characterized reference fields, the thickness of the beryllium window should not exceed 10 mm, but it is acceptable to use an aluminum window with a maximum thickness of 1.5 mm. 320 KV X-ray tube installed at KHNP-CRI has been designed to equipped with a 3 mm Be for tube window and an additional 4 mm Al to obtain a total inherent filtration equivalent to that of 4 mm Al. In the previous study, the inherent filtration of 320 kV X-ray tube at KHNP-CRI has been verified by MCNP simulation. However, the ISO standards suggest a method for determining the thickness of the inherent filtration by half-value layer (HVL) measurement and spectrometry. In this regard, the inherent filtration was reassessed using HVL measurement. To determine the inherent filtration, 1st HVL of the beam generated by the tube at a tube potential 60 kV was measured. The measurements were conducted with a calibrated spherical ionization chamber (model A3, Exradine) placed at a distance of 1 m from the target, at the center of the radiation field size. The X-ray tube current was set to 2 mA. The thickness of aluminum absorbers was gradually adjusted in subsequent measurements until approached the 1st HVL. 1st HVL were estimated using the linear regression equation computed with the current values for the thickness of the absorbers. As a results, the thickness of the 1st HVL was estimated as 2.845 mm Al. According to the correlation between the inherent filtration and 1st HVL suggested in ISO standard, the value of the inherent filtration was deduced as 4.25 mm Al that is rounded to the nearest 0.05 mm by interpolation. Further studies on the effects of the inherent filtration thickness determined in this study will be conducted.
        9.
        2023.05 구독 인증기관·개인회원 무료
        Since 2018, Central Research Institute of Korea Hydro & Nuclear Power (KHNP–CRI) has been operating an X-ray irradiation system with a maximum voltage of 160 kV and 320 kV X-ray tube to test personal dosimeters in accordance with ANSI N13.11-2009 “Personnel Dosimetry Performance- Criteria for Testing”. This standard requires that dosimeters for the photon category testing be irradiated with the X-ray beams appropriate to the ISO beam quality requirements. KHNP-CRI has implemented the fourteen X-ray reference radiation beams in compliance with ISO-4037-1, 2, and 3. When installing the X-ray irradiation system, KHNP-CRI evaluated the uncertainties of dose conversion coefficients for deep and shallow doses, based on “Catalogue of X-ray spectra and their characteristic data – ISO and DIN radiation qualities, therapy and diagnostic radiation qualities, unfiltered X-ray spectra” published by Physikalisch Technische Bundesanstalt (PTB). A CdTe detector (X-123, AMPTEK) with disk type collimators made of tungsten was used to acquire X-ray spectra. The detector was located at 1 m from the center of the target material in the Xray tubes. Six uncertainty factors for the dose conversion coefficients for the fourteen X-ray beams were chosen as follows; the minimum and maximum cut-off energies Emin and Emax, the air density (ρ), the accuracy of the high-voltage of the X-ray tube, statistics of the pulse height spectra and the unfolding method. For example, uncertainty of each quantity for a HK30 beam was calculated to be 0.3%, 2.32%, 0.19%, 1.25%, and 0.13%, and 0.18%, respectively. The combined standard uncertainty for the deep dose conversion coefficient of the HK30 beam was calculated to be 2.67%. The coverage factor corresponding to a 95 percent confidence interval was obtained as k = 1.8 using a Monte Carlo method, which is slightly lower the coverage factor of k = 1.95 for a Gaussian distribution. This seems to result from that two dominant uncertainties, the unfolding uncertainty and minimum cut-off energy uncertainty, follow a rectangular distribution.
        10.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive waste can be classified according to the concentration level for radionuclides, and the disposal method is different through the level. Gamma analysis is inevitably performed to determine the concentration of radioactive waste, and when a large amount of radioactive waste is generated, such as decommissioning nuclear facilities, it takes a lot of time to analyze samples. The performance of a lot of analysis can cause human errors and workload. In general, gamma analysis is performed using by HPGe detector. Recently, for convenience of analysis, commercial automatic sample changers applicable to the HPGe detectors were developed. The automatic sample changers generate individual analysis reports for each sample. In this study, gamma analysis procedure was improved using the application of the automatic sample changer and the automated data parsing using by Python. The application of automatic sample changers and data parsing technique can solve the problems. The human errors were reduced to 0% compared to the previous method by improving the gamma analysis procedure, and working time were also dramatically reduced. This automation of analysis procedure will contribute to reducing the burden of analysis work and reducing human errors through various improvements.
        11.
        2023.05 구독 인증기관·개인회원 무료
        Prevention of radiation hazards to workers and the environment in the event of decommissioning nuclear power plants is a top priority. To this end, it is essential to continuously perform radiation characterization before and during decommissioning. In operating nuclear power plants, various detectors are used depending on the purpose of measurement. Portable detectors used in power plants have excellent portability, but there is a limit to the use of a single measuring device alone to quantify radioactive contamination, nuclide analysis, and ensure representation of measurement results. In foreign countries, gamma-ray visualization detectors are being actively used for operating and decommissioning nuclear power plants. KHNP is also conducting research on the development of gamma-ray visualization detectors for multipurpose field measurement at decommissioning nuclear power plants. It aims to develop detectors capable of visualizing radioactive contamination, analyzing nuclides, estimating radioactivity, and estimating dose rates. To this end, we are developing related software according to the development process by purchasing sensors from H3D, which account for more than 75% of the US gamma-ray visualization detector market. In addition, field tests are planned in the order of Wolsong Unit 1 and Kori Unit 1 with Research reactor in Gongneung-dong in accordance with the progress of development. The detector will be optimized by analyzing the test results according to various gamma radiation field environments. The development detector will be used for various measurement purposes for Kori unit 1 and Wolsong
        12.
        2023.05 구독 인증기관·개인회원 무료
        Metakaolin-based geopolymers have shown promise as suitable candidates for 14C immobilization and final disposal. It has been shown that the physicochemical properties of metakaolin wasteforms meet, and often far exceeding, the strict compression strength and leaching acceptance criteria of the South Korea radioactive waste disposal site. However, it is not possible to analyze and characterize the internal structure of the geopolymer wasteform by conventional characterization techniques such as microscopy without destruction of the wasteform; an impractical solution for inspecting wasteforms destined for final disposal. Internal inspection is important for ensuring wastes are homogenously mixed throughout the wasteform and that the wasteform itself does not pose any significant defects that may have formed either during formulation and curing or as a result of testing prior to final disposal. X-ray Computed Tomography (XCT) enables Non-Destructive Evaluation (NDE) of objects, such as final wasteforms, allowing for both their internal and external, characterization without destruction. However, for accurate quantification of an objects dimensions the spatial resolution (length and volume measures) must be know to a high degree of precision and accuracy. This often requires extensive knowledge of the equipment being used, its precise set-up, maintenance and calibration, as well as expert operation to yield the best results. A spatial resolution target consists of manufactured defects of uniformed dimensions and geometries which can be measured to a high degree of accuracy. Implementing the use of a spatial resolution target, the dimensions of which are known and certified independently, would allow for rapid dimensional calibration of XCT systems for the purpose of object metrology. However, for a spatial resolution target to be practical it should be made of the same material as the intended specimen, or at least exhibit comparable X-ray attenuation. In this study, attempts have been made to manufacture spatial resolution targets using geopolymer, silica glass, and alumina rods, as well as 3D printed materials with varying degrees of success. The metakaolin was activated by an alkaline activator KOH to from a geopolymer paste that was moulded into a cylinder (Diameter approx. 25 mm). The solidified geopolymer cylinder as well as both the silica glass rod and alumina rod (Diameter approx. 25 mm) we cut to approximately 4 mm ± 0.5 mm height with additional end caps cut measuring 17.5 mm ± 2.5 mm height. All parts were then polished to a high finish and visually inspected for their suitability as spatial resolution targets.
        14.
        2023.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The most comprehensive and particularly reliable method for non-destructively measuring the residual stress of the surface layer of metals is the sin method. When X-rays were used the relationship of sin measured on the surface layer of the processing metal did not show linearity when the sin method was used. In this case, since the effective penetration depth changes according to the changing direction of the incident X-ray,  becomes a sin function. Since  cannot be used as a constant, the relationship in sin cannot be linear. Therefore, in this paper, the orthogonal function method according to Warren’s diffraction theory and the basic profile of normal distribution were synthesized, and the X-ray diffraction profile was calculated and reviewed when there was a linear strain (stress) gradient on the surface. When there is a strain gradient, the X-ray diffraction profile becomes asymmetric, and as a result, the peak position, the position of half-maximum, and the centroid position show different values. The difference between the peak position and the centroid position appeared more clearly as the strain (stress) gradient became larger, and the basic profile width was smaller. The weighted average strain enables stress analysis when there is a strain (stress) gradient, based on the strain value corresponding to the centroid position of the diffracted X-rays. At the 1/5 max height of X-ray diffraction, the position where the diffracted X-ray is divided into two by drawing a straight line parallel to the background, corresponds approximately to the centroid position.
        4,000원
        15.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A Forbush decrease (FD) is a depression of cosmic ray (CR) intensity observed by ground-based neutron monitors (NMs). The CR intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection (ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of the NM station. However, sometimes NMs of almost the same cutoff rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on CR intensity modulation of FD event recorded at different NMs due to different ICME propagation directions as an additional parameter in the model explaining the CR modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We suggest the hypothesis that the asymmetric CR modulations of FD events are determined by the propagation directions of the associated ICMEs.
        4,000원
        16.
        2022.10 구독 인증기관·개인회원 무료
        This study was performed to assess the cosmic-ray effect caused by altitude in the aerial gammaray measurement. For the gamma-ray measurement experiment by altitude, the aerial survey system composed of four 4×4×16 inches large volume NaI (Tl) detectors was used. The aerial survey system was installed in a rotor-craft to stably keep its flight altitude and position. In addition, in order to avoid to time-dependent shielding effects with the amount of fuel, a rotor-craft of which the fuel tank is not located beneath the cabin floor was selected. In this study, the ROI (Region Of Interest) was set to the 3~6 MeV range to assess the cosmic-ray contribution to the gamma-ray spectrum that could ignore the contribution of the dominant natural radionuclides. The gamma-ray spectra measured inside and outside of the rotor-craft on the ground were compared to evaluate the shielding effects of the aircraft body. As a result, the count rate of the 40K photo peak was decreased by about 10% when measuring the inside compared to the outside. On the other hand, the total count rate of the 3~6 MeV region was decreased by about 0.7% under the same condition. Therefore, the aircraft body effect was insignificant in 3~6 MeV region considering the relative uncertainty of 0.04~0.78% (1σ). In addition, the count rate in the 3~6 MeV range according to altitude was evaluated to assess the cosmic-ray effect. In order to evaluate the change in the ROI count rate according to the altitude, the gamma-ray spectrum was measured in the range of 300~2,000 m above the sea to avoid the effect of terrestrial radiation. As a result, the relationship between altitude and count rate in the 3~6 MeV range showed a high correlation with the R2 value of 0.99, when the approximate equation was derived in the form of a quadratic polynomial. Also, the count rate of 3~6 MeV at 50~500 m above the ground was estimated using the correlation equation, and this value was compared with the measured count rate. As a result of comparing the average value of estimated count rate and measured count rate, the relative difference is less than 2%. Considering the relative uncertainty of 0.78~4.11% (1σ), it was possible to evaluate the count rate of the 3~6 MeV region relatively accurately. The results of this study could be used for further study on background dose corrections in aerial survey.
        17.
        2022.10 구독 인증기관·개인회원 무료
        In gamma-ray spectrometry for volume samples, the self-attenuation effect should be considered in the case of differences in chemical composition and density between the efficiency calibration source for quantitative analysis of sample and the sample actually measured. In particular, the lower the gamma-ray energy, the greater the gamma-ray attenuation due to the self-attenuation effect of the sample. So, the attenuation effect of low-energy gamma-rays in the sample should be corrected to avoid over- or under-estimation of its radioactivity. One of the most important factors in correcting the self-attenuation effect of the sample is the linear attenuation coefficient for the sample, which can be directly calculated using a collimator. The larger the size of the collimator, the more advantageous it is to calculate the linear attenuation coefficient of the sample, but excessive size may limit the use of the collimator in a typical environmental laboratory due to its heavy weight. Therefore, it is necessary to optimize the collimator size and structure according to the measurement environment and purpose. This study is to optimize a collimator that can determine the effective linear attenuation coefficient of low-energy gamma-rays, and verify its applicability. The overall structure of the designed collimator was optimized for gamma-ray energy of less than 100 keV and cylindrical plastic bottle with diameter of 60 mm and a height of 40 mm. The materials of optimized collimator consisted of tungsten. Acryl and acetal were used to form the housing of the collimator, which fixes the central axis of the bottle, collimator and point-like source. In addition, using the housing, the height of the tungsten is adjusted according to the height of the sample. For applicability evaluation of the optimized collimator, IAEA reference material in solid form were used. The sample was filled in the bottle with heights of 1, 2, 3 and 4 cm respectively. Using the collimator and point-like source of 210Pb (46.5 keV), 241Am (59.5 keV), and 57Co (121.1 keV), the linear attenuation coefficient and the radioactivity for the samples were calculated. As a result, to calculate the linear attenuation coefficient using the optimized collimator, a relatively high sample height is required. However, the optimized collimator can be used to determine the linear attenuation coefficients of low-energy gamma-rays for the self-attenuation correction regardless of the sample height. It is concluded that the optimized collimator can be useful to correct the sample selfattenuation effect.
        18.
        2022.10 구독 인증기관·개인회원 무료
        Gamma spectrometry is one of the main analysis methods used to obtain information about unknown radioactive materials. In gamma-ray energy spectrometry, even for the same gamma-ray spectrum, the analysis results may be slightly different depending on the skill of the analyst. Therefore, it is important to increase the proficiency of the analyst in order to derive accurate analysis results. This paper describes the development of the virtual spectrum simulator program for gamma spectrometry training. This simulator program consists of an instructor module and trainee module program based on an integrated server, in which the instructor transmits a virtual spectrum of arbitrarily specified measurement conditions to the students, allowing each student to submit analysis results. It can reproduce a virtual gamma-ray energy spectrum based on virtual reality and augmented reality technique and includes analysis function for the spectrum, allowing users to experience realistic measurement and analysis online. The virtual gamma-ray energy spectrum DB program manages a database including theoretical data obtained by Monte Carlo simulation and actual measured data, which are the basis for creating a virtual spectrum. The currently developed database contains data on HPGe laboratory measurement as well as in-situ measurements (ground surface, decommissioned facility wall, radiowaste drum) of portable HPGe detectors, LaBr3(Ce) detector and NaI detector. The analysis function can be applied not only to the virtual spectrum, but also to the input measured spectrum. The parameters of the peak analysis algorithm are customizable so that even low-resolution spectra can be properly analyzed. The validity of the database and analysis algorithm was verified by comparing with the results derived by the existing analysis programs. In the future, the application of various in-situ gamma spectrometers will be implemented to improve the profiling of the depth distribution of deposited nuclides through dose rate assessment, and the applicability of the completed simulator in actual in-situ gamma spectrometry will be verified.
        19.
        2022.10 구독 인증기관·개인회원 무료
        Domestic nuclear facilities establish a physical protection system to respond to illegal transfer of nuclear materials and sabotage to nuclear materials and nuclear facilities, and operate a security search system in order to prevent the entry of controlled items into the facility. X-ray security search is also the most widely used for such security search. Since 2018, Korea Institute of Nuclear Nonproliferation and Control (KINAC) has developed the “X-ray security screening Web-Based Training Program (XWBT)” and has been using it in the physical protection education. The XWBT contains about 700 X-ray images of the item, and can learn X-ray images by type or package of the item. In addition, trainees can practice reading the X-ray image of the item or package, looking for controlled items, and determining whether the item could be passed or opened. However, there is a limit to Web-Based X-ray training program alone. This is because even if the same item is contained in the same bag, the X-ray image could be varied depending on the direction, angle, and other items in the package. Therefore, in addition to XWBT, X-ray reading practice education for actual luggage should be conducted in parallel. In addition, trainees should be familiar with various images through repetitive X-ray reading practice training so that they should be able to intuitively read X-ray images and find controlled items. Therefore, securing educational time is essential to produce skilled trainees. Korea Aviation Security Academy (KASA), which produces professional security inspectors, has established and operated a “Security search education filed for actual luggage” where trainees can pack their own bags, read X-ray images, and practice whether there are controlled items packed. In addition, KASA provides 40-hour training for security search personnel, which focuses on improving the practical skills that security search personnel must have. This study describes the current status of “X-ray Security Search” of Physical Protection Education for security personnel and presents course improvements through the case of KASA.
        1 2 3 4 5