수처리 및 의약바이오 분야에서 유효물질 분리에 활용되고 있는 알루미나 중공사 분리막은 얇은 두께로 인해 취 급 및 적용시 쉽게 파괴되는 단점이 있기 때문에 분리막의 강도를 100 MPa 이상으로 향상시키기 위한 연구가 필요하다. 본 연구에서는 나노입자의 함량을 0, 1, 3, 5 wt%로 증가시켰을 때 제조된 중공사 분리막의 특성을 평가하였다. 그 결과, 나노입 자의 함량이 증가함에 따라 중공사 분리막의 강도는 79 MPa에서 115 MPa로 증가하였으며, 밀도는 1.76 g/m3에서 1.88 g/m3 으로 증가하였고 기공률과 평균기공크기는 각각 51%에서 48%로, 416 nm에서 352 nm로 감소한 것을 확인하였다. 스폰지구 조가 발달하고 스폰지구조의 기공크기가 향상된 알루미나 중공사 분리막은 100 MPa 이상으로 기계적 강도가 향상되었으며, 약 100000 GPU의 높은 질소 투과도 및 약 3000 L/m2h의 높은 물 투과도를 나타내었다. 따라서, γ-알루미나 나노입자를 소 결조제로 첨가하는 것은 α-알루미나 중공사 분리막의 기계적 강도를 효과적으로 증진시키고 높은 투과성능을 유지할 수 있 는 매우 유효한 방법임을 확인하였다.
본 연구에서는 입자크기가 다른 3가지 α-알루미나 분체로부터 주입성형법과 소결법을 혼용하여 튜브형 α-알루 미나 지지체를 제조하여 초기 α-알루미나 분체의 입자크기와 소결 온도가 지지체의 기공구조와 기체투과 특성에 미치는 영 향을 고찰하였다. 평균입경이 0.2, 0.5, 1.7 μm인 α-알루미나 분체를 사용했을 시 제조된 α-알루미나 지지체는 각각 약 80, 130, 200 nm의 평균 기공경을 가졌으며 평균 기공경은 소결 온도 보다는 초기 알루미나 분체의 입자크기에 의존하였다. 모 든 시편에서 소결 온도가 증가할수록 지지체의 부피 밀도는 증가하였고 겉보기 기공률은 감소하였다. He, N2, O2, CO2에 대 하여 30°C에서 단일기체 투과 특성을 평가한 결과, 기체 투과도는 기공경 제곱에 비례하여 증가하였고 기공률이 증가함에 따 라서 직선적으로 증가하였다. 이를 토대로 제조된 α-알루미나 지지체의 기체 투과는 점성유동(viscous flow)에 의하여 이루 어지며, α-알루미나 지지체의 기체 투과 특성은 초기 α-알루미나 분체의 입자크기와 소결온도를 제어함으로써 조절될 수 있 음을 확인할 수 있었다.
알루미나 분말이 분산된 고분자용액을 비용매 유도 상전이법으로 방사 및 소결하여 알루미나 중공사막을 제조하 였다. 용매-비용매의 상호작용 속도에 따른 중공사막 기공 구조 형성을 확인하고, 특성을 분석하기 위해 dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), triethylphosphite (TEP) 용매를 사용하여 방사액을 제조하였으며, 고분자 바인더로는 polyethersulfone (PESf), 첨가제로는 polyvinylpyrrolidone (PVP)를 사용하였다. 알루미나 중공사막의 기공 구조 변화를 확인 하기 위해 SEM으로 중공사막 단면을 분석하였다. DMSO, DMAc 용매를 사용할 경우 지상 구조(finger-like structure)와 망상 구조(sponge-like structure)가 복합된 기공 구조가 나타났으며, TEP 용매를 사용할 경우 전체적으로 망상 구조를 가졌다. 기공 구조에 따른 중공사막의 특성을 확인하기 위해 기체투과도, 기공도 및 기계적 강도를 측정하였다. 망상 구조를 갖는 중공사막 은 높은 기체 투과특성을 보였으며 지상 구조가 증가할수록 기체투과도가 감소하였다. 반대로 기계적 강도는 지상 구조가 발 달할수록 증가하였다.
본 연구에서는 입자크기가 다른 3가지 α-알루미나 분말로 부터 주입성형법과 소결법을 혼용하여 튜브형 α-알루미나 지지체 제작하였고 이때에 초기 α-알루 미나 분말의 입자크기와 소결 온도가 지지체의 기공구조와 기공구조가 투과 특 성에 미치는 영향을 고찰하였다. 제작 된 지지체는 수은함침법과 Archimedes 법을 통하여 기공경과 기공률을 측정하였다. 또한 30°C에서 He, N2, O2, CO2 기체에 대하여 투과 특성을 고찰하여, 각 지지체의 토튜오서티를 계산 하였으며, 지지체의 기공경 및 기공률이 지지체의 기체 투과 특성에 미치는 영향을 고찰 하였다.
본 연구에서는 평균입경 0.2, 0.5, 1,7㎛ 크기의 α-알루미나 분말을 이용하여 다공성 α-알루미나 지지체의 기공구조를 조절하고자 하였다. 다공성 α-알루미나 지지체는 슬립캐스팅공법을 이용하여 제조한 후 소결하였으며, 이 때 소결 온도가 지지체의 기공특성에 미치는 영향에 대하여 고찰하였다. 제조된 다공성 α-알루미나 지지체는 수은기공분석기를 이용하여 기공크기 및 기공률 등을 분석하였으며, 단일기체투과장치를 이용하여 기체 투과도를 측정하였다. 그 결과 평균입경 0.2, 0.5, 1.7㎛ 크기의 α-알루미나 분말을 이용하여 제조된 지지체는 각각 80, 130, 200㎚의 기공경을 가졌으며, CO2 단일기체에 대해 각각 1300, 1700, 5000GPU를 나타냈다.
본 연구에서는 silicalite-1 제올라이트 분리막 합성 시에 종결정 코팅용액 pH 변화가 제올라이트 분리층 미세구조에 미치는 영항을 고찰하였다. 75 nm 크기로 합성된 종결정은 에탄올에 분산된 후 침지코팅법으로 지지체 표면에 코팅되었으며 분산용액의 pH는 2.2, 7.0, 9.3으로 조절되었다. pH가 7인 경우, 균일하고 두께가 3~4 μm인 silicalite-1 제올라이트 분리층이 형성되었고 분리층 결정입 크기는 100 nm로 미세하였다. 반면, pH가 2.2와 9.3인 경우, 분리층 두께가 얇고 불완전하였으며 분리층 결정입 크기도 약 1 μm로 조대하였다. pH 7에서 완전한 제올라이트 분리층이 형성된 것은 침지코팅 중에 지지체와 종 결정이 서로 다른 부호의 전하를 가져 정전기적 인력이 작용하여 균일하고 조밀하며 두껍고 다층의 종결정 코팅층이 형성되었 기 때문이었다. 반면에 pH가 2.2와 9.3인 경우, 침지코팅 중에 지지체와 종결정이 서로 같은 부호의 전하를 가져 정전기적 반 발력이 작용하기 때문에 불완전한 덮힘에 의하여 불완전한 분리층이 형성된다고 판단되었다. 결론적으로, 종결정 코팅용액의 pH가 silicalite-1 제올라이트 분리층의 두께, 결정립 크기 등 미세구조를 결정하는 중요한 인자임을 확인할 수 있었다.
본 연구에서는 평균입경 0.2, 0.5㎛ 크기의 α-알루미나 분말을 이용하여 다공성 α-알루미나 지지체의 기공구조를 조절하고자 하였다. 다공성 α-알루미나 지지체는 슬립캐스팅공법을 이용하여 제조한 후 소결하였으며, 이 때 소결 온도가 지지체의 수축률 및 소결거동 등에 미치는 영향에 대하여 고찰하였다. 제조된 다공성 α-알루미나 지지체는 수은기공분석기를 이용하여 기공크기 및 기공률 등을 분석하였으며, 단일기체투과장치를 이용하여 기체 투과도를 측정하였다. 그 결과 평균입경 0.5㎛ 크기의 α-알루미나 분말을 이용하여 제조된 지지체의 경우, 평균 입경 0.2㎛ 크기의 α-알루미나 분말을 이용하여 제조된 지지체에 비하여 기공크기가 크고 기공률이 높았으며, 기체투과도가 높을 것을 알 수 있었다.
본 연구에서는 종결정 코팅층이 NaA 제올라이트 분리막 형성에 미치는 영향에 대하여 고찰하였다. NaA 제올라이트 분리막은 평균입경 100 nm 종결정을 다공성 α-알루미나 표면에 진공여과 코팅하고 100˚C에서 24시간 수열처리하여 합성되었다. 이때 지지체 표면에 분포된 종결정 양을 조절한 후 형성된 NaA 제올라이트 분리층의 두께와 결정입 크기 등 미세구조에 미치는 영향에 대하여 고찰하였다. 종결정 코팅 양은 지지체를 통과한 종결정 수용액의 여과 양을 조절하여 제어하였다. 종결정을 단일층으로 코팅한 후 합성하였을 경우, 코팅 양이 증가함에 따라 분리층 단면에서의 두께와 균일도는 증가하였으며, 표면에서의 결정입 크기는 감소하면서 균일도는 증가하였다. 반면, 종결정을 다층으로 코팅한 후 합성하였을 경우, 균일한 분리층을 형성하였지만 단일층으로 코팅된 경우에 비하여 불균일하였으며 두꺼운 분리층이 형성되었다. 균일하고 초박형의 결함이 없는 제올라이트 분리층을 형성하기 위해서는 종결정을 균일하고 단일층으로 코팅하여야 함을 알 수 있었다. 본 연구로부터 종결정의 코팅 상태가 이차성장에 의한 NaA 제올라이트 분리층의 미세구조를 결정하는 중요한 인자임을 확인할 수 있었다.
We investigate the effects of redox reaction on preparation of high purity α-alumina from selectively ground aluminum dross. Preparation procedure of the α-alumina from the aluminum dross has four steps: i) selective crushing and grinding, ii) leaching process, iii) redox reaction, and iv) precipitation reaction under controlled pH. Aluminum dross supplied from a smelter was ground to separate metallic aluminum. After the separation, the recovered particles were treated with hydrochloric acid(HCl) to leach aluminum as aluminum chloride solution. Then, the aluminum chloride solution was applied to a redox reaction with hydrogen peroxide(H2O2). The pH value of the solution was controlled by addition of ammonia to obtain aluminum hydroxide and to remove other impurities. Then, the obtained aluminum hydroxide was dried at 60˚C and heat-treated at 1300˚C to form α-alumina. Aluminum dross was found to contain a complex mixture of aluminum metal, aluminum oxide, aluminum nitride, and spinel compounds. Regardless of introduction of the redox reaction, both of the sintered products are composed mainly of α-alumina. There were fewer impurities in the solution subject to the redox reaction than there were in the solution that was not subject to the redox reaction. The impurities were precipitated by pH control with ammonia solution, and then removed. We can obtain aluminum hydroxide with high purity through control of pH after the redox reaction. Thus, pH control brings a synthesis of α-alumina with fewer impurities after the redox reaction. Consequently, high purity α-alumina from aluminum dross can be fabricated through the process by redox reaction.
Tomato fruits(Lycoperisicon esculentum) synthesize the glycoalkaloids dehydrotomatine and α-tomatine, possibly as defense against bacteria, fungi and insects. We developed a new effective method to prepare and purify dehydrotomatine and α-tomatine that exists in tomato fruits using alumina column chromatography and high performance liquid chromatography (HPLC). The tomato glycoalkaloids(TGA) in tomato was extracted with 2% acetic acid, and then precipitated with ammonium hydroxide(pH=10.5). The dry precipitate substance was applied on alumina column, and then fractionated with water saturated n-butylalcohol. The TGA(Fr. No. 26~36) were collected and dried under reduced pressure. The TGA was performed on a reverse phase HPLC(Inertsil ODS-2, 5 ㎛), eluted with acetonitrile/20mM KH2PO4(24:76, v/v) at 208 ㎚. Two peaks were detected on HPLC, and individual peak was collected by repeating HPLC. Furthermore, to confirm the identity dehydrotomatine and α-tomatine, each peak isolated was hydrolyzed with 1N HCl into sugar and aglycone tomatidine. The sugars were converted to trimethylsilyl ester derivatives. The nature and molar ratios of sugars were identified by gas-liquid chromatography(GLC) and the aglycone by high-performance liquid chromatography(HPLC). The first peak (Rt=17.5 min) eluted from HPLC was identified as dehydrotomatine, and second peak(Rt=21.0 min) was as α-tomatine. This technique has been used effectively to prepare and isolate dehydrotomatine and α-tomatine from tomato fruits.
Nanocrystalline transient aluminas (-alumina) were coated on core particles (-alumina) by a carbonate precipitation and thermal-assisted combustion, which is environmentally friend. The ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of transient aluminas was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The crystalline size and morphology of the synthetic, AACH, were greatly dependent on pH and temperature. AACH with a size of 5 nm was coated on the core alumina particle at pH 9. whereas rod shape and large agglomerates were coated at pH 8 and 11, respectively. The AACH was tightly bonded coated on the core particle due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of the core alumina powder. The synthetic precursor successfully converted to amorphous- and -alumina phase at low temperature through decomposition of surface complexes and thermal-assisted phase transformation.
A porous α-alumina tube of 2.5 ㎜ O.D. and 1.9 ㎜ I.D. was used as the support of an inorganic membrane. Macropores of the tube, about 150 nm in size, were plugged with silica formed by thermal decomposition of tetraethylorthosillcate at 600℃. The forced cross-flow CVD method that reactant was evacuated through the porous wall of the support was very effective in plugging macropores. The H_2 permeance of the prepared membrane was of the order of 10^-8 mol s^-1 m^-2 . Pa^-1, while the N_2 permeance was below 10^-11 mol. s^-1 . m^-2 . Pa^-1 at 600℃. This was comparable to that of silica-modified Vycor glass whose size was 4 nm.