This study is a preliminary investigation into a method for updating analytical models using actual vibration measurement data to improve the reliability of the seismic performance evaluations. The research was conducted on 26 models with various parameters, aiming to develop an optimal analytical model that closely matches the natural frequencies of the actual building. By identifying the dynamic characteristics of the target building through vibration measurements taken just before the demolition of the structure, the natural frequency analysis results of the analytical models were compared to the measured data. Based on this comparison, an optimized method for adjusting the parameters of the analytical models was derived. Throughout the analysis, various parameters were adjusted, and the eigenvalue analysis results were corrected by comparing them with vibration measurements. Among the comparative analytical models, the model with the lowest error rate was selected. The results showed that, in all cases, the analytical model with a concrete compressive strength of 16 MPa (based on actual measurements), pin boundary conditions, and an idealized strip footing cross-section had the closest match to the actual building's natural frequencies, with an average error of less than 8%.
This paper addresses a scheduling problem aimed at minimizing makespan in a permutation flow shop with two machines and an inspection process that must be conducted at least once every certain number of outcomes from the first machine. A mathematical programming approach and a genetic algorithm, incorporating Johnson's rule and a specific mutation process, were developed to solve this problem. Johnson's rule was used to generate an initial population, while the mutation process ensured compliance with the inspection constraints. The results showed that within a computation time limit of 300 seconds, the mathematical programming approach often failed to provide optimal or feasible solutions, especially for larger job sets. For instance, when the process times of both machines were similar and the inspection time was longer, the mathematical programming approach failed to solve all 10 experiments with just 15 jobs and only had a 50% success rate for 100 jobs. In contrast, the proposed genetic algorithm solved all instances and delivered equal or superior results compared to the mathematical programming approach.
본 연구는 YOLO(You Only Look Once)-Segmentation 기반 해양생물 탐지 모델의 성능 비교와 수중 이미지의 색상 왜곡 보정을 위한 딥러닝 모델 구축에 중점을 둔다. 탐지 모델 구축에는 Ultralytics에서 공식적으로 배포하는 YOLO의 버전별 객체분할 모델인 YOLOv5-Seg, YOLOv8-Seg, YOLOv9-Seg, YOLOv11-Seg를 활용하였으며, 22종의 해양생물 데이터셋을 사용해 동일한 학습 과정을 거쳤다. 이 를 통해 각 버전의 탐지 성능을 비교한 결과, YOLOv9c-Seg 모델이 정밀도(Precision) 0.908, 재현율(Recall) 0.912, mAP@50 0.943으로 가장 높 은 성능을 기록하며 최적의 모델로 선정되었다. 또한, 수중 환경에서 발생하는 색상 왜곡 문제를 해결하고 탐지 정확도를 높이기 위해 CLAHE, White Balance, Image Filter 등의 RGB 요소 변환 기법을 적용한 PhysicalNN 기반 이미지 보정 모델을 구축하였다. 선정된 탐지 모델 과 이미지 보정 모델을 이용해 수중영상 내 탐지된 생물의 위치를 정확히 파악하고, Monocular Depth Estimation(MDE) 알고리즘과 거리 및 크기 측정을 위한 가이드 스틱을 활용하여 대상 생물의 거리와 크기를 추정하였다. 이를 통해 단안 카메라 영상만으로도 3차원 공간의 해 양생물 크기와 이에 따른 체중을 간접적으로 추정하였으며, 향후 해양 생태계 모니터링에 활용할 수 있는 가능성을 시사한다.
안정적이고 효율적인 수자원 공급을 보장하는 것은 가정, 산업, 공공 보건 분야 복지에 필수적이다. 상수도 시스템에서 이상을 감지하기 위해 데이터 모델, 수리 모델 기반 시뮬레이션 등 다양한 접근 방식을 통해 이상감지 역량이 꾸준히 향상되어 왔으나, 현장 적용 및 검증에 한계가 있어 실질적인 활용은 폭 넓게 이루어지지 못하고 있다. 실제 적용 가능한 이상감지 시스템 측면에서, 본 연구에서는 유량 및 압력 계측 데이터를 활용하여 시스템 내 이상 발생을 신속하게 감지하고 개략적인 위치를 파악하기 위한 실시간 이상감지 및 탐색 모델을 제안하였다. 제안된 모델은 유량수지 분석, 유량-수두손실 관계, EPANET 기반 수리 해석 방법을 통합하여 이상 감지 및 위치 파악의 정확성을 개선시키고자 하였다. 현장 실험 결과, 제안된 모델은 높은 신뢰도에서 시스템 내 이상유량의 발생을 효과적으로 감지하고, 발생 구간을 파악할 수 있는 것으로 나타났다. 본 연구 성과는 시스템의 실시간 이상 감지 및 운영관리를 위한 실효성 있는 접근 방식을 제공함으로써 상수도 시스템의 지속 가능하고 회복력 있는 운영관리에 기여할 것으로 기대된다.
This study measured the displacement that occurs when applying expansion joints between the jointed concrete pavement (JCP) and continuously reinforced concrete pavement (CRCP) on domestic expressway and obtained the basic data necessary for the rational design of expansion joints. Displacement gauges were installed at the ends of the CRCP expansion joints, and the longitudinal displacements were measured for five years to derive daily and seasonal displacements, which were compared with the results obtained at the JCP and anchor lug ends. The expansion joints of the CRCP terminal ends were observed to have initially expanded by 5.8 and 5.9 mm. The daily displacements were 0.024 and 0.034 mm/℃ on average, and the seasonal displacements decreased rapidly with an increase in distance from the CRCP ends. In addition, the displacements at locations 50–150 m away exhibited behaviors that were inversely proportional to the temperature, suggesting that they were more affected by the surrounding cracks. The seasonal displacement measured at the end of the CRCP expansion joint was 0.0292–0.0701 mm/℃. The displacement occurring at the end of the domestic CRCP expansion joint was estimated to consist of short-term expansion and seasonal displacements and was lower than when the asphalt separation layer was used. This was because the surface behavior was strongly suppressed below the lean concrete layer. Therefore, continuous observation is necessary, as different trends may be observed according to the increase in CRCP thickness.
Onboard truck scales can accurately measure payload under static conditions. However, their performance is limited in accounting for dynamic environments encountered during driving, leading to inaccuracies in load estimation under real-world conditions. This study employs TruckCaliber, a dynamic state measurement system, to estimate real-time vehicle loads. Fusion sensor modules were installed on leaf spring suspensions and vehicle frames to collect tilt and IMU data. The system was implemented on a commercial truck, and driving tests were conducted with varying payloads. The analysis focused on curved sections under different dynamic conditions.
도심지에 시공된 아스팔트 포장은 교통량 증가와 중차량의 가감속으로 인해 포트홀 및 소성변형 등의 파손이 흔히 발생하고 있다. 이러한 아스팔트 포장의 파손을 최소화하기 위해 콘크리트 포장으로 전환하는 공법인 초속경 시멘트 콘크리트 포장 공법과 프리캐스 트 콘크리트 포장 공법이 있으나 고비용으로 인해 널리 적용하기에는 한계가 있는 실정이다. 최근 서울시에서는 신설 중앙버스정류장 에 현장타설 방식으로 연속철근 콘크리트 포장(CRCP)을 시공하였다. 본 연구에서는 인력포설 방식으로 시공한 중앙버스정류장의 CRCP에 대한 공용성을 분석하고자 온도계, 균열유도장치, 철근 변형률계, 콘크리트 변형률계, 변위계, 균열계 등을 포함하는 계측시스 템을 구축하였으며 본 논문에서는 이러한 계측시스템에 대하여 기술한다.
본 연구에서는 광섬유를 이용한 탄소섬유복합재료(CFRP) 긴장재 개발을 목표로 다양한 성능실험을 수행하였다. 광섬 유 센서를 활용한 탄소섬유 긴장재의 계측성능은 부착된 변형률 게이지의 계측 값과 비교한 결과, 3.7% 이내로 동일한 계측을 하는 것으로 나타났고, 탄소섬유 긴장재 파단까지 계측이 가능하기 때문에, 센싱용 긴장재로 활용이 가능함을 확인하였다. 현장 적용을 위한 장기성능 실험결과, 릴렉세이션의 경우 저릴렉세이션 강연선 기준 값인 2.5%를 만족하였고 피로시험의 경우 도로 교설계기준을 준용하여 200만회 이후 인장성능의 변화가 없는 것을 확인되어, 탄소섬유 긴장재 뿐만 아니라 정착구도 장기성능 을 확보한 것으로 판단된다
본 연구에서는 무인항공기인 드론을 활용한 VDMS(Vision-based Displacement Measurement System)를 통해 동적변위계측 정 확도와 동특성 추정 신뢰성 검증을 위한 동적실험을 실시하였다. 비행하는 드론의 이동 및 회전진동을 보정하기 위해 영상 내부의 변 위가 발생하지 않는 고정점을 활용한 보정밥법을 사용하였으며, 검증을 위해 설치한 범용 센서인 LVDT와 LDS의 변위계측 결과와 비 교하여 그 오차를 시간영역과 진동수영역에서 분석하였다. 3가지 타입의 장비 모두 최대 변위 도달 및 주기 운동 계측에 있어서 대체 적으로 유사한 결과를 나타내었다. LDS 기준의 오차 분석 결과, 드론과 LVDT는 가진 진동수 변화에 의한 오차 값은 미비하나, 최대 발생 변위가 작을수록 오차 값은 증가하였다.
본 연구에서는 2 016년부터 2 02 0년까지 내륙 관측소 중 안개 최다발 지역인 안동을 대상으로 XGBoost-DART 머신러닝 알고리즘을 이용하여 1 시간 후 안개 유무를 예측하였다. 기상자료, 농업관측자료, 추가 파생자료와 각 자료 를 오버 샘플링한 확장자료, 총 6개의 데이터 세트를 사용하였다. 목측으로 획득한 기상현상번호와 시정계 관측으로 측 정된 시정거리 자료를 각각 안개 유[1]무[0]로 이진 범주화하였다. 총 12개의 머신러닝 모델링 실험을 설계하였고, 안개 가 사회와 지역사회에 미치는 유해성을 고려하여 모델의 성능은 재현율과 AUC-ROC를 중심으로 평가하였다. 전체적으 로, 오버샘플링한 기상자료와 기상현상번호 기반의 예측 목표를 조합한 실험이 최고 성능을 보였다. 이 연구 결과는 머 신러닝 알고리즘을 활용한 안개 예측에 있어서, 목측으로 획득한 기상현상번호의 중요성을 암시한다.