검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Industrial wastewater often contains a number of recalcitrant organic contaminants. These contaminants are hardly degradable by biological wastewater treatment processes, which requires a more powerful treatment method based on chemical oxidation. Advanced oxidation technology (AOT) has been extensively studied for the treatment of nonbiodegradable organics in water and wastewater. Among different AOTs developed up to date, ozonation and the Fenton process are the representative technologies that widely used in the field. Based on the traditional ozonation and the Fenton process, several modified processes have been also developed to accelerate the production of reactive radicals. This article reviews the chemistry of ozonation and the Fenton process as well as the cases of application of these two AOTs to industrial wastewater treatment. In addition, research needs to improve the cost efficiency of ozonation and the Fenton process were discussed.
        5,200원
        3.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.
        4,300원
        4.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Volatile organic compounds(VOCs) are toxic carcinogenic compounds found in wastewater. VOCs require rapid removal because they are easily volatilized during wastewater treatment. Electrochemical advanced oxidation processes(EAOPs) are considered efficient for VOC removal, based on their fast and versatile anodic electrochemical oxidation of pollutants. Many studies have reported the efficiency of removal of various types of pollutants using different anodes, but few studies have examined volatilization of VOCs during EAOPs. This study examined the removal efficiency for VOCs (chloroform, benzene, trichloroethylene and toluene) by oxidization and volatilization under a static stirred, aerated condition and an EAOP to compare the volatility of each compound. The removal efficiency of the optimum anode was determined by comparing the smallest volatilization ratio and the largest oxidization ratio for four different dimensionally stable anodes(DSA): Pt/Ti, IrO2/Ti, IrO2/Ti, and IrO2-Ru-Pd/Ti. EAOP was operated under same current density (25 mA/cm2) and electrolyte concentration (0.05 M, as NaCl). The high volatility of the VOCs resulted in removal of more than 90% within 30 min under aerated conditions. For EAOP, the IrO2-Ru/Ti anode exhibited the highest VOC removal efficiency, at over 98% in 1 h, and the lowest VOC volatilization (less than 5%). Chloroform was the most recalcitrant VOC due to its high volatility and chemical stability, but it was oxidized 99.2% by IrO2-Ru/Ti, 90.2% by IrO2-Ru-Pd/Ti, 78% by IrO2/Ti, and 75.4% by Pt/Ti anodes The oxidation and volatilization ratios of the VOCs indicate that the IrO2-Ru/Ti anode has superior electrochemical properties for VOC treatment due to its rapid oxidation process and its prevention of bubbling and volatilization of VOCs.
        4,200원
        5.
        2017.05 구독 인증기관·개인회원 무료
        산업폐수 처리에서 미량오염물질(독성 유기물, 화합물, 연료 등)의 제거가 중요하다. 생물학적 처리에 의해서는 미량오염물질을 제거하기 어렵다. 따라서 본 연구에서는 분리막과 고도전기산화를 접목하여 색도, 미세입자등을 효과적으로 제거하고 막오염을 저감시키는 막결합형 고도전기산화시스템을 개발하였다. 색도는 원수 120 도(Pt-Co 색도 값)에서 처리수 20 도이하로 제거되었고, 탁도의 경우 처리수 0.1 NTU이하의 수준으로 감소하였다. 또한 막오염 저감의 성능으로 전극을 켜지않고 실험하였을때 16 kPa까지 증가하였으며 0.5 A/L전류를 공급하였을 때 5 kPa으로 유지되었다. 본 연구는 한국환경산업기술원의 환경융합 신기술 개발사업(No. 2015001640004) 연구결과의 일부이다.
        7.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        먹는 물 내에 존재하는 발암원인으로 의심되는 유기화학물질을 재래식 정수처리방법으로 제거한다는 것은 불가능하다. 이들을 AOP산화 & M/F membrane 혼성공정법을 이용하여 목적하는 처리수로 처리하고자 지하수를 반응조에 유효용량으로 유입하고 유기화학물질을 인위적으로 투입 혼합하여 충분히 희석시키고 이것을 효율적으로 처리하기 위해 최적운전조건을 도출하였다. 유기 화학물질 중 VOCs는 페놀과 톨루엔을 그리고 농약은 파라치온, 다이아지논과 카바닐을 대상으로 조사하였다. 실험은 각각 분류별 단일용액과 혼합용액으로 수행하였으며, 실험결과 충분한 분해 및 제거를 위한 운전조건은 H2O2는 150 mL로 정량 주입하고, pH는 5.5~6.0, 온도는 12~16℃로 일정하게 유지하고, 용존오존량은 5.0 mg/L이상, 반응시간은 30~40분이 최적 조건이었으며 그리고 같은 반응기 내 분리막의 사용은 0.45 μm 공경크기의 M/F membrane을 이용하여 대량의 음용수를 얻기 위한 결정이었다.
        4,500원