전 세계적으로 지하도로의 건설이 활발히 이루어지고 있지만, 지하도로에서의 운전자 행태에 대한 연구는 여전히 부족한 실정이다. 또한 현재 지하도로 설계기준은 주로 지상도로나 터널 기준을 준용하고 있어, 지하 특유의 환경적 요인을 충분히 반영하지 못하고 있 다. 이에 따라, 지하도로에서의 운전자 행태를 분석하고 이를 반영한 설계기준 마련이 필요하다. 본 연구는 지하도로에서 운전자가 차로 변경을 어떻게 수행하는지 분석하고, 정보 제공 방식이 운전자 행태에 미치는 영향을 평가 하는 것을 목적으로 한다. 이를 통해, 향후 지하도로 설계 및 운영에 필요한 개선 사항을 제안하고자 하였다. 이를 위해 본 연구에서 는 소형차 전용도로의 설계 재원을 기준으로한 VR 기반 주행시뮬레이터 맵을 구성하였고 34명의 피실험자를 모집하여 주행시뮬레이 터 실험을 수행하였다. 첫 번째로 차로변경 행태를 살펴보기 위하여 현행 차로 변경 허용 구간 기준인 400m와 대안으로 차로 변경 허용 구간 2km로 비교하 여 운전자의 차로변경 행태에 대해 분석을 수행하였다. 두 번째로는 현행 정보제공 체계 기준인 분기전 2km, 1km, 150m 전 정보안내 대안과 대안으로 추가 500m 지점에 정보를 제공하는 방안에 대해 주행시뮬레이터 실험을 수행하고 대안별 효과를 비교하였다. 실험결과를 검토한 결과, 지상 도로보다 지하 도로에서 운전자들은 차로 변경을 더 어려워하는 경향이 있었다. 두 번째로 운전자들은 차로 변경 허용구간에 따른 주행패턴의 유의미한 변화는 존재하지 않는 것으로 나타났으며, 평소의 주행 습관에 따라 차로 변경을 하 는 것으로 나타났다. 세 번째로는 정보 제공 횟수를 늘릴 경우 운전자들은 차로 변경과 진출 지점을 더 빨리 결정하며, 차로 변경 지 점의 분포가 작아지는 현상이 관찰되었다. 이는 많은 운전자들이 비슷한 지점에서 차로 변경을 하게 되어 상충 구간이 줄어들고, 그에 따라 교통 안전성이 증가할 수 있음을 의미한다.
2011년 발생한 동일본대지진의 영향으로 후쿠시마 원자력발전소 폭파사고 이후 국제원자력기구(IAEA)의 방사선비상계획구역(EPZ) 확 대를 권고하였으며, 이에 따라 우리나라에서도 방사선비상계획구역(EPZ, Emergency Planning Zone)를 기존 반경 8~10km에서 20~30km 로 확대를 하였다. 이에 따라 방사선 비상시 대규모 대피에 관한 관심이 높아지며 원활한 대피를 위한 교통운영관리전략 수립이 필요 한 실정이다. 방사선 비상과 같은 대규모 재난이 발생하면 동시다발적인 대피수요가 발생하고 한정된 도로교통망에 차량이 집중되어 극심한 혼잡이 발생할 것으로 예상된다. 따라서, 본 연구에서는 교통분야에서 활용되는 도로운영관리전략 중 방사선비상시 적용 가능 한 전략 및 적용기준을 수립한다. 또한, 선정된 도로운영관리전략의 효과분석을 위하여 TOVA를 활용하였으며, Sub Network 기능으로 대상지역의 네트워크를 추출 후 분석을 시행하였다. 방사선비상시 도로운영관리전략은 도로용량 증대, 통행속도 향상, 교통수요 관리 및 기타 등 네 가지로 구분하여 분류하였다. 이 중 우리나라에 도입되지 않은 역류차로제 전략 도입 효과분석을 수행하였다. 시뮬레이 션 대상지는 고리원자력 발전소의 사고가 발생한 것으로 가정하며, 대피인원은 원자력발전소에서 부산광역시로 이동하는 것으로 설정 하였다. 효과분석 결과, 시행시 120.6%의 교통량(시간당 7,600대)과 117% 속도(30.21km/h → 65.55km/h)가 증가되는 것으로 분석되었다
This study examines and redefines the transportation policy directions for Seoul, focusing on the diagnosis of existing traffic management strategies and the establishment of new policy directions. The research analyzes major transportation policies implemented in Seoul from 2015 to 2024 and evaluates key initiatives within the city’s mid-term urban transportation improvement plan (2022-2026). Based on this evaluation, new policy directions are proposed, emphasizing "traffic efficiency," "traffic safety," and "citizen convenience," while also incorporating "sustainable eco-friendly approaches" and the "establishment of institutional foundations." In addition to existing initiatives, this study highlights the need for further focus on "technological innovation and development," "environmental sustainability," and "improvements in laws, institutions, and administration." A comprehensive roadmap is developed, offering short, medium, and long-term action plans for the improvement of traffic operations. Key recommendations include the advancement of smart signal systems using AI and big data, the introduction of an integrated mobility platform, the enhancement of safety for vulnerable road users through autonomous driving technologies, and the development of eco-friendly transport systems. The study emphasizes the importance of adapting to rapid social and technological changes through proactive policy formulation and administrative streamlining.
PURPOSES : This study presents a general guideline for the initial management of traffic signal timings in response to traffic incidents, prior to the implementation of specific treatments in detail. The proposed solution includes a set of optimal reductions in the green time rates at three signalized intersections upstream. METHODS : To account for the various traffic and incident conditions that may be encountered, a total of 36 traffic-condition scenarios were prepared. These scenarios encompass a wide range of conditions, from unsaturated to near-saturated conditions, and were designed to provide a comprehensive understanding of the impact of traffic conditions on signal timing. For each of the traffic conditions, all 27 traffic signal timing combinations were subjected to testing. A total of 972 simulation analyses were conducted using the SUMO model. The results indicated that the scenario with the lowest control delay was the optimal choice. RESULTS : The results indicated that the most effective initial management for the traffic incident would be to reduce the green signal timings by 20% at the first two upstream intersections and by 40% at the third intersection. CONCLUSIONS : We propose reducing the green times by 20% at the first and second intersections and by 40% at the third intersection as the initial response of the traffic signal control center when a traffic incident occurs.
PURPOSES : This paper proposes an artificial neural network (ANN)-based real-time traffic signal time design model using real-time field data available at intersections equipped with smart intersections. The proposed model generates suitable traffic signal timings for the next cycle, which are assumed to be near the optimal values based on a set of counted directional real-time traffic volumes. METHODS : A training dataset of optimal traffic signal timing data was prepared through the CORSIM Optimal Signal Timing program developed for this study to find the best signal timings, minimizing intersection control delays estimated with CORSIM and a heuristic searching method. The proposed traffic signal timing design model was developed using a training dataset and an ANN learning process. To determine the difference between the traditional pre-time model primarily used in practice and the proposed model, a comparison test was conducted with historical data obtained for a month at a specific intersection in Uiwang, Korea. RESULTS : The test results revealed that the proposed method could reduce control delays for most of the day compared to the existing methods, excluding the peak hour periods when control delays were similar. This is because existing methods focus only on peak times in practice. CONCLUSIONS : The results indicate that the proposed method enhances the performance of traffic signal systems because it rapidly provides alternatives for all-day cycle periods. This would also reduce the management cost (repeated field data collection) required to increase the performance to that level. A robust traffic-signal timing design model (e.g., ANN) is required to handle various combinations of directional demands.
기상불량으로 인해 발생하고 있는 해양사고 중 해무 발생에 따른 시계제한은 선박의 좌초, 선저 파손 등의 사고를 유발하는 것과 동시에 사고에 따른 인명피해를 동시에 수반하고 있으며 이는 매년 지속적으로 발생하고 있다. 또한 해상에서의 저시정은 지역간 국소적으로 차이가 존재하는 경우에도 일괄적으로 여객선에 대한 운항 지연 및 통제 조치를 하고 있어 섬주민들의 교통수단 이용에 상당 한 불편을 초래하는 등의 사회적 문제로 대두되고 있다. 더욱이 이와 같은 조치는 지역적 편차나 사람마다 관측의 판단 기준이 상이하여 이를 객관적으로 정량화하지 못하고 있어 더욱 문제가 심화되고 있는 실정이다. 현재 각 항만의 VTS에서는 시정거리가 1km 미만인 경우 선박의 운항을 통제하고 있으며, 이 경우 저시정에 따른 해무 가시거리를 시정계 혹은 육안에 의한 목측(目測)에 의존하고 있을 정도로 객관적인 데이터 수집을 통한 평가에 있어서는 한계가 있다. 정부에서는 이와 같은 해양교통안전 저해요소를 해결하기 위한 일환으로 해 무 탐지 및 예측을 위한 해양기상신호표지 및 해상안개관측망을 구축하여 운용하고 있으나, 국지적으로 발생하는 해무를 관측하기 위한 시스템은 매우 부족한 현실적 어려움에 놓여있다. 이에 따라 본 논문에서는 해상에서의 저시정으로 인해 발생하고 있는 여러 사회적 문 제를 해결하기 위한 국내․외 정책동향에 대해 살펴보고, 이와 관련한 일반국민 및 현장 이해관계자의 인식 정도를 조사․분석하여 해무 에 따른 해상교통안전을 확보하기 위한 정부지원(해무 탐지 및 예측 기술을 기반으로 한 해상교통운영 체계 개발 등)의 필요성에 대한 기 초자료를 제공하고자 한다. 또한 이는 궁극적으로 해무로 인해 발생할 수 있는 해상안전 위험요소를 사전에 차단함으로써 보다 안정된 해상교통운영체계를 마련하는데 그 목적을 두고 있다.
PURPOSES : This study proposes brief guidelines for traffic engineers in the field to refer to when operating tram priority signals based on the "early green" and "green extension" methods.
METHODS : A set of VISSIM simulation analyses was conducted considering various traffic and control conditions in a hypothetical corridor consisting of two signalized intersections. The traffic conditions were varied at five different levels. The control conditions were varied at twenty-five levels by changing the tram priority traffic signal control parameters, i.e., the early green unit time and green extension unit time. A total of 125 simulation runs were from these combinations. A set of optimal signal timings for ordinary non-tram vehicles was prepared with TRANSYT-7F and implemented for the simulation. A tram priority signal control module based on VISVAP was exclusively developed for this study.
RESULTS : As expected, no specific trend was found in the relationship between the two tram priority control parameters (early green time and green extension time). However, a trend was observed when assuming that the early green and green extension operations were mutually exclusive. Specifically, an inverse trend appeared between the tram priority control parameter values and level of congestion according to the performance measure (average network delay).
CONCLUSIONS : For the early green control parameters, it is better to provide six seconds when undersaturated and four seconds when near-saturated. For the green extension control parameter, four seconds is suitable.
PURPOSES : In this study, we attempted to derive the optimal operation plan for urban public transportation routes by verifying changes in demand for use according to factors affecting public transportation.
METHODS : First, the factors affecting changes in demand for public transportation were drawn. Second, the appropriate areas to be analyzed and their main routes were selected. Third, the basic data required for estimating public transportation traffic demand were collected through transportation card data. Fourth, basic networks and routes in TOVA were established for public transportation assignment. Finally, through traffic assignment, changes in usage demand owing to factors affecting bus routes were verified, and the optical operation plan was derived.
RESULTS : Among the three routes selected for analysis, the rearranged B2 route increased by 662 from 6,142 to 6,804 per day, with the largest increase in daily demand. In addition, the number of stops increased with the access time, but there was no change in the average congestion. CONCLUSIONS : Through this study, it is believed that in can be used as the basic data on how to improve bus routes in local governments from the perspective of operators by analyzing the effectiveness of rearranging routes and drawing optimal operation measures.
PURPOSES : In this paper, pedestrian-oriented time assured traffic operation (POTATO), adopted in Korea at a single crossing pedestrianoriented operating area, is explored and applied to a simulation experiment and test site to verify the operation efficiency.
METHODS : Three candidate plans are presented as a method to operate pedestrian-oriented signal operations that can overcome the restrictions on signal controllers in Korea. The selected POTATO and TOD signal operations were compared and analyzed. The delay and pedestrian queues, present length, and number of times were used as comparative indices.
RESULTS : Scenario-specific simulations confirmed that the delay, compared to TOD signal operation, was reduced by up to 5 s/ped depending on the vehicle traffic volume and the number of pedestrians. For the vehicle delay, the results increased up to 8.99 s/veh, depending on the traffic volume of the vehicles and pedestrians. As a result of the test site operation, POTATO operation improved by 5.12 s/ped (approximately 46.69% improvement) compared to TOD operation in the hours commuting to school and by 2.84 s/ped in the hours commuting from school (approximately 51.13% improvement). In case of vehicle delay, the delay increased by 2.35 s/veh (approximately 64.39%) in the hours commuting to school and 1.20 s/veh (approximately 21.11%) in the hours commuting from school compared to the TOD operation.
CONCLUSIONS : Through simulations and test site pilot operation verifications, the effects of pedestrian delay improvement were more positive if POTATO proposed in this study was low in vehicle traffic.
PURPOSES: This paper presents the development and evaluation of the smart hardware-in-the-loop systems (SMART-HILS) that evaluate traffic signal operations of a new real-time traffic signal control system called SMART SIGNAL at the traffic management center (TMC) level.
METHODS: The layouts of the hardware and software components of the SMART-HILS were introduced in this study and its performance was tested using real-time traffic signal operation algorithms embedded in the SMART SIGNAL control server by utilizing the VISSIM simulation model. In this study, the SMART-HILS management software was developed using .NET programming language. Fewer random seed numbers were used for the test scenarios by conducting statistical tests to address the shortcomings of a longer time due to the adoption of the simulation time as the real-time by the TMC server.
RESULTS : It was determined that SMART-HILS can communicate with TMC and VISSIM for both upload and download directions within acceptable time constraints and evaluate new design algorithms for traffic signal timing.
CONCLUSIONS : In practice, traffic engineers can utilize SMART-HILS for testing the traffic signal operation alternatives before their selection and implementation. This application could increase the productivity of traffic signal operation.