환경오염을 제어하기 위한 청정에너지에 대한 수요 증가는 빠르게 증가하고 있습니다. 리튬 이온 배터리와 같은 충전식 배터리는 청정에너지의 우수한 원천이지만 높은 수요와 공급 불일치로 인해 리튬 금속이 빠르게 고갈되고 있습니다. 배터리 폐기물에서 귀금속을 회수하는 것은 환경오염 제어와 함께 가능한 해결책 중 하나입니다. 멤브레인 기반 분리 방법은 폐기물에서 리튬을 회수할 수 있는 매우 성공적인 상업적 공정입니다. 이 작업은 최근에 보고된 다양한 방법을 다룰 것이며 검토 형식으로 작성될 것입니다.
The formation behavior of a passive state film on the surface of STS304 in electrolytic solution was analyzed to determine its metallic ion composition. The properties of passive state films vary depending on the Fe and Cr ions in the electrolytic solution. It was observed that the passive state film surface became flat and glossy as the concentration of Fe and Cr ions in the electrolytic solution increased. The corrosion resistance property of the passive state film was proportional to the amount of Fe and Cr in the electrolytic solution. An initial passive state film with high Fe concentration was formed on the surface of STS304 during early electrolytic polishing. Osmotic pressure of Fe ions occurs between the passive state film and electrolytic solution due to the Fe ion concentration gradient. The Fe in the passive state film is dissolved into the electrolyte, and Cr fills up the Fe ion vacancies. As a result, a good corrosion-resistant floating film was formed. The more Fe ions in the electrolytic solution, the faster the film is formed, and as a result, a flat passive state film containing a large amount of Cr can be formed.
최근 오염물질 수위의 급격한 상승세와 더불어 가속화되는 자연환경 파괴로 인해 다양한 환경 속에 쌓이는 오염 물질의 검출 및 모니터링은 현대 사회의 중요한 미션 중 하나로 자리 잡았다. 본 논문에는 멤브레인 기반의 광학 센서를 활용한 미량 오염물질 검출에 대한 최근 연구 동향이 요약되어 있다. 본 논문에 포함된 연구들은 섬유소로 이루어진 멤브레인을 검출을 위한 플랫폼으로 사용하였으며, 금속 나노 입자나 형광단을 색 변화 검출을 위해 이용하였다. 제조된 광학 센서들은 모두 적절하거나 특출한 수준의 감도를 보였고, 대부분의 센서에서 타겟 물질이 아닌 이온이나 물질에는 반응하지 않는 정확성 또한 확인되었다. 검출 플랫폼으로 이용된 섬유소 멤브레인의 물리적, 화학적 특성들은 멤브레인 합성 방법이나 색 변화를 위한 광학 물질 등을 바꾸는 방법을 통해 각 연구의 목적에 맞추어 최적화될 수 있었다. 또한, 멤브레인을 기반으로 하여 제조 된 센서들은 운반이 편리하고 기계적 성질이 강해 현장에서 바로 오염물질을 검출할 수도 있다는 사실이 제시되었다. 이러한 장점 덕분에 멤브레인 기반 센서들은 식용수에서 검출된 중금속의 정량화와 자연 수질환경에서 발견되는 미량 중금속 및 유독성 항생제의 감지 등 다양한 목적을 위해 활용될 수 있었다. 몇몇의 연구에서 제조된 센서들은 항균성이나 재활용성 또한 나타내었다. 대부분의 센서들이 타겟 물질을 감지한 후 육안으로도 식별 가능한 색 변화를 보였으나, 본 논문에 포함된 많은 연구들은 형광 발산, UV-vis 분광학, RGB 색 강도 차이 등을 비교 분석한 더 상세한 검출 결과를 제시하였다.
Tin bis(monohydrogen orthophosphate) monohydrate 물질의 흡착 성질에 관하여 KCl 수용액을 통하여 조사하였다. 금속이온 농도와 pH를 변화시키면서 어떻게 달라지는지 화학평형에 바탕을 두고 data를 분석하였다. 금속이온들의 흡착 data는 Langmuir 흡착식에 넣어 Langmuir 수치들을 얻는데 사용되었다. Tin phosphate는 산성에서 이온교환 화합물로 작용하였으며, 2가의 전이금속이온에 대해 Cu+2 > Co+2 > Ni+2의 순서로 선택적 흡착성질을 나타내었다. 약한 산성 이온 교환체에서와 같이 금속이온의 교환은 tin phosphate의 선택성을 결정하는데 결정적 역할을 하였다. 모든 경우에서 흡착의 정도는 온도와 농도의 증가와 함께 증가하였다. Lnngmuir 수치들은 흡착과정 동안의 엔트로피, 엔탈피, 자유에너지 변화량같은 열역학적 함수들을 계산하는데 이용되었다.
알칼리 금속 이온과 염소 이온이 포함된 용액으로부터 이온교환수지를 이용한 이온 제거에 대한 연구를 진행하였다. 양이온인 금속이온(Na+와 K+)의 제거에는 양이온교환수지를, 음이온인 염소 이온(Cl-)의 제거에는 음이온교환수지를 사용하였다. 용액 A (Na+를 36,633 ppm, Cl-를 57,921 ppm 함유)의 경우, Na+ 이온과 Cl- 이온은 20분 이내에 99% 이상 제거되었다. 용액 B (K+를 1,638 ppm 함유)의 경우, K+ 이온은 3분 이내에 99% 이상 제거되었다.
The co-doping effect of aliovalent metal ions such as Mg2+, Ca2+, Sr2+, Ba2+, and Zn2+ on the photoluminescence of the Y2O3:Eu3+ red phosphor, prepared by spray pyrolysis, is analyzed. Mg2+ metal doping is found to be helpful for enhancing the luminescence of Y2O3:Eu3+. When comparing the luminescence intensity at the optimum doping level of each Mg2+ ion, the emission enhancement shows the order of Zn2+ Ba2+ > Ca2+ > Sr3+> Mg2+. The highest emission occurs when doping approximately 1.3% Zn2+, which is approximately 127% of the luminescence intensity of pure Y2O3:Eu3+. The highest emission was about 127% of the luminescence intensity of pure Y2O3:Eu3+ when doping about 1.3% Zn2+. It is determined that the reason (Y, M)2O3:Eu3+ has improved luminescence compared to that of Y2O3:Eu3+ is because the crystallinity of the matrix is improved and the non-luminous defects are reduced, even though local lattice strain is formed by the doping of aliovalent metal. Further improvement of the luminescence is achieved while reducing the particle size by using Li2CO3 as a flux with organic additives.
가속화되는 산업화로 인해 중금속 이온의 침출이 환경문제로 떠오르고 있다. 수질 정화를 위한 몇 가지 방법 중 기능성 고분자 섬유를 이용한 흡착은 효율적이며 경제적이라는 장점이 있다. 특히, 폴리아크릴로나이트릴(polyacrylonitrile, PAN)은 금속 이온을 흡착할 수 있는 작용기가 많아 관심을 끌고 있다. PAN은 쉽게 전기방사를 통해 고분자 나노 섬유화될 수 있으며 높은 표면적을 가질 수 있다. 본 총설에서 다룰 복합 PAN 섬유는 폐수 처리를 위한 또 다른 유형의 고분자이다.
Layered LiNi0.83Co0.11Mn0.06O2 cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, nondoping pristine LiNi0.83Co0.11Mn0.06O2 cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical α-NaFeO2-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dualdoped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).
Cu(II) can cause health problem for human being and phosphate is a key pollutant induces eutrophication in rivers and ponds. To remove of Cu(II) and phosphate from solution, chitosan as adsorbent was chosen and used as a form of hydrogel bead. Due to the chemical instability of hydrogel chitosan bead (HCB), the crosslinked HCB by glutaraldehyde (GA) was prepared (HCB-G). HCB-G maintained the spherical bead type at 1% HCl without a loss of chitosan. A variety of batch experiment tests were carried out to determine the removal efficiency (%), maximum uptake (Q, mg/g), and reaction rate. In the single presence of Cu(II) or phosphate, the removal efficiency was obtained to 17 and 16%, respectively. However, the removal efficiency of Cu(II) and phosphate was increased to 50~55% at a mixed solution. The maximum uptake (Q) for Cu(II) and phosphate was enhanced from 11.3 to74.4 mg/g and from 3.34 to 36.6 mg/g, respectively. While the reaction rate of Cu(II) and phosphate was almost finished within 24 and 6 h at single solution, it was not changed for Cu(II) but was retarded for phosphate at mixed solution.
제지공정 폐수 내에 포함된 리그닌을 재사용하기 위해 같이 포함되어있는 금속이온을 줄여야한다. 본 연구에서는 세라믹 분리막을 이용하여 제지공정 폐수 내의 금속이온을 제거하는 연구를 진행하였다. 분리막은 DMAc 용매에 PESf 고분자를 용해시킨 뒤 α-Alumina 분말을 넣고 PVP 분산제를 첨가하여 평판형 분리막을 제조하였다. FE-SEM으로 분리막의 단면과 표면을 관찰하고 CFP (Capillary Flow Porometer)장치를 통해 기공크기를 측정하였다. 분리막을 이용 한 금속이온제거 실험을 한 뒤 실험 전, 후의 폐수를 ICP-MS분석을 통해 금속 이온량을 측정하였다.
연구에서는 펄프공정으로부터 배출되는 리그닌 추출물 내의 금속이온분리를 위한 연구를 진행하였다. α- Alumina 분말에 DMAc (N,N-dimethylacetamide) 용매와 PESf (Polyethersulfone) 고분자를 혼합하고 PVP (Polyvinylpyrrolidone) 분산제를 첨가하여 슬립 캐스팅 방법으로 분리막을 제조하였다. 분리막은 CFP (Capillary Flow Porometer) 장치 를 통해 기공크기를 측정하고 FE-SEM (Field Emission Scanning Electron Microscope) 장치를 이용하여 실제 분리막 표면과 단면을 관찰하였다. 플럭스는 분리 실험장치를 이용하여 시간당 여과된 무게를 측정하여 계산하였다. 기공크기측정은 0 psi에 서 30 psi까지 서서히 증가하는 승압조건에서 진행하였다. 분리막의 기공크기는 0.4 μm 크기를 가지며 플럭스는 분리막의 파 울링에 의해 초기 플럭스 값인 6.36 kg⋅m-2⋅h-1에서 1.98 kg⋅m-2⋅h-1으로 감소하여 3시간 이후부터 일정해지는 것을 확인 하였다. 투과 실험 후 막 오염물질은 간단한 세척을 통해 제거 가능하였다. 분리실험을 통해 초기 리그닌 추출물 내에 포함되 어 있던 Na은 69%만큼 줄었고, Fe은 87%, K은 95%, Ca은 93%, Mg은 96%만큼 제거됨을 보였다
본 연구에서는 수계 내 포함된 양이온들 중 특히 중금속 이온을 효율적으로 분리할 수 있는 양이온 교환막을 개 발하였다. 기저 고분자로는 sulfonated polyetheretherketone (SPEEK)를 사용하였으며 이에 중금속 이온에 결합력이 강한 킬 레이팅 수지를 파우더링하여 첨가하였다. 또한 양이온 교환막의 성능을 최적화시키기 위해 킬레이팅 수지의 함량 및 SPEEK 의 이온교환용량을 제어하였다. 결과적으로 제조된 양이온 교환막을 막 축전식 탈염 공정(membrane capacitive deionization, MCDI)에 적용한 결과 중금속 이온 제거 효율이 20% 이상 향상됨을 확인할 수 있었다.
Cellulose acetate-graft-(glycidylmethacrylate-g-polyethylene glycol) (CA-g- (GMA-g-PEG) was synthesized and incorporated into acetylated methyl cellulose (AMC) to prepare high rejection performance ultrafiltration membranes. H1-NMR and X-ray photoelectron spectroscopy study confirmed the successful synthesis of CA-g-(GMA-g-PEG) and utilized for hydrophilic modification agent. Polyethyleneimine(PEI), HumicAcid(HA) and Citric Acid(CA) ligands was used to bind the metal ions in aqueous solution.The rejection efficiency of AMC/CA-g-(GMA-g-PEG) blend membranes was studied in terms of pH, concentration and time. The successful developments would allow the safe and economical advancement in the fabrication of AMC blend membranes for ultrafiltration applications.