본 연구에서는 구조물의 재료, 구조물의 단면, 지진 하중등의 불확실성을 고려한 저형 전단벽의 최대 전단력를 예측하는 뉴 런-네트워크 모델을 개발하였다. 이를 위해 실험 데이터를 통해 검증된 박스타입 저형 전단벽 수치해석 모델을 구축하였고, 가정된 분 포를 통해 200개의 구조물의 재료, 단면변수를 라틴 하이퍼 큐브 샘플링을 통해 추출하였다. 또한 이전 연구에서 사용된 인공지진파를 데이터를 기반으로 10개의 다른 PGA 레벨별 총 200개의 인공지진파 데이터를 구축하였다. 뉴런-네트워크 모델의 Training 및 testing을 위해 200개의 데이터셋에 상응 수치해석 모델을 구축하고 최대 전단력을 산출하였다. 이렇게 구축된 데이터셋을 이용하여 최종적으로 뉴런-네트워크 모델을 확정하였다. 마지막으로 구축된 모델로부터 얻어진 취약도와 기존에 사용되는 방법들로부터 얻은 취약도를 비교, 분석하여 본 연구에서 구축된 모델의 정확도를 보여주었다.
This study quantitatively analyzes the inter-sectoral linkages of emerging security based on the network of Sustainable Development Goals (SDGs) in North Korea's Voluntary National Review Report (VNR) using Social Network Analysis (SNA). As a result of the analysis, North Korea's overall linkage score for each emerging security sector was high in the following order: health security (7.8), environmental security (5.9), food security (5.4), and energy security (4.0). This refers to the degree of interconnectivity with other security sectors. The ranking of security with high connectivity by the emerging security sector is as follows. Food security was in the order of environment > health > energy security, health security was in the order of environment > food security, energy security was in the order of health > environment > food security, and environmental security was highly connected in the order of health > energy > food security. This quantitative analysis indicates the importance of emerging security sectors and the need for mutual linkage in North Korea's SDGs implementation strategy. This will help set priorities for future cooperation in emerging security areas between North and South Korea and seeking organic linkage plans for each security sector.
해상교통관제센터(VTS)의 관제사는 구역 내 교통 상황을 빠르고 정확하게 파악하여 관제가 필요한 선박에게 정보를 제공하는 역할을 수행한다. 그러나 교통량이 급격히 증가하는 경우 관제사의 업무 부하로 인해 관제 공백이 발생하기도 한다. 이러한 이유에서 관 제사의 업무 부하를 줄이고, 일관성 있는 관제 정보를 제공할 수 있는 관제 지원 기술의 개발이 필요한 실정이며, 본 논문에서는 구역 내 이상 운항 선박을 자동으로 식별하는 모델을 제안하였다. 제안하는 이상 운항 식별 모델은 규칙 기반 모델, 위치 기반 모델, 맥락 기반 모 델로 구성되며, 대상 해역의 교통 특성에 최적화된 교통 네트워크 모델을 사용하는 특징이 있다. 구현된 모델은 시범센터(대산항 VTS)에 서 수집되는 실해역 데이터를 적용하여 실험을 수행하였다. 실험을 통해 실해역의 다양한 이상 운항 상황이 자동으로 식별됨을 확인하였 고, 전문가 평가를 통해 식별 결과를 검증하였다.
Effects-Based Operations (EBO) refers to a process for achieving strategic goals by focusing on effects rather than attrition-based destruction. For a successful implementation of EBO, identifying key nodes in an adversary network is crucial in the process of EBO. In this study, we suggest a network-based approach that combines network centrality and optimization to select the most influential nodes. First, we analyze the adversary’s network structure to identify the node influence using degree and betweenness centrality. Degree centrality refers to the extent of direct links of a node to other nodes, and betweenness centrality refers to the extent to which a node lies between the paths connecting other nodes of a network together. Based on the centrality results, we then suggest an optimization model in which we minimize the sum of the main effects of the adversary by identifying the most influential nodes under the dynamic nature of the adversary network structure. Our results show that key node identification based on our optimization model outperforms simple centrality-based node identification in terms of decreasing the entire network value. We expect that these results can provide insight not only to military field for selecting key targets, but also to other multidisciplinary areas in identifying key nodes when they are interacting to each other in a network.
원자력발전소 지진 확률론적 안전성 평가인 PSA(Probabilistic Safety Assessment)는 오랜 기간에 걸쳐 확고히 구축되어 왔다. 반면 에 다양한 공정 기반의 산업시설물의 경우 화재, 폭발, 확산(유출) 재난에 대해 주로 연구되어 왔으며, 지진에 대해서는 상대적으로 연 구가 미미하였다. 하지만, 플랜트 설계 당시와 달리 해당 부지가 지진 영향권에 들어갈 경우 지진 PSA 수행은 필수적이다. 지진 PSA 를 수행하기 위해서는 확률론적 지진 재해도 해석(Probabilistic Seismic Hazard Analysis), 사건수목 해석(Event Tree Analysis), 고장수 목 해석(Fault Tree Analysis), 취약도 곡선 등을 필요로 한다. 원자력 발전소의 경우 노심 손상 방지라는 최우선 목표에 따라 많은 사고 시나리오 분석을 통해 사건수목이 구축되었지만, 산업시설물의 경우 공정의 다양성과 최우선 손상 방지 핵심설비의 부재로 인해 일 반적인 사건수목 구축이 어렵다. 따라서, 본 연구에서는 산업시설물 지진 PSA를 수행하기 위해 고장수목을 바탕으로 확률론적 시각 도구인 베이지안 네트워크(Bayesian Network, BN)로 변환하여 리스크를 평가하는 방법을 제안한다. 제안된 방법을 이용하여 임의로 생성된 가스플랜트 Plot Plan에 대해 최종 BN을 구축하고, 다양한 사건 경우에 대한 효용성있는 의사결정과정을 보임으로써 그 우수 성을 확인하였다.
VR 및 AR은 대중들이 접근하기 어려운 기술이 아닌, 개인용 스마트 폰 하나로 체험 및 활용 할 수 있는 시 대가 되었다. 최근 이런 개인용 스마트 폰의 다양한 센서를 활용한 AR 콘텐츠가 개발되고 서비스 되고 있다. AR 콘텐츠의 수요가 커지면서Software교육의 수요도 커지게 되었다. 하지만, 비전공자들도 배우기 쉬운 Python 언어를 중심으로 SW 교육이 활발해졌음에도, 아직까지 AR 콘텐츠 개발에서는 Python을 적극적으로 사용할 수 없다. AR 콘텐츠는 기술 분야 뿐 아니라 인터렉티브 아트 분야에서도 활발하게 사용되고 있다. 최근 인터 렉티브 아티스트들은 Python을 이용하여 인공지능을 활용한 작품을 개발 및 전시하고 있다. Python을 통한 SW 교육은 SW 분야의 취업에만 필요한 것이 아니라 아트 분야에서도 필요한 교육이 되었다. 본 논문에서는 AR 콘텐츠 개발 교육을 위한 Python과 Unity 3D Engine을 이용한 네트워크 기반 AR 프레임 워크를 제안한다. 제 안한 AR 프레임 워크는 Web 기반 브라우저에서 개인용 스마트 폰의 카메라에 접근하여 카메라 정보를 Main Server에 전송하고 Python에서 Mark를 분석한다. Mark 정보에 맞춰 Unity 3D Engine에서 3D 오브젝트를 렌더 링하고, 카메라 정보화 합성 후, MJPEG 스트리밍으로 개인용 스마트 폰 화면에 렌더링 된다. 본 논문에서 제 안한 AR 프레임 워크는 SW 교육 플랫폼과 비대면 교육 플랫폼의 요구사항을 반영하며, 인터렉티브 아티스트 들의 다양한 도전에 필요한 기술적 제한을 낮춰 줄 것으로 기대한다.
이 연구는 전염병의 잠재적 확산 가능성이 높은 지역의 탐색을 목적으로, 코로나19 전후의 버스 네트워크 클러스터의 시공간적 변화를 분석한다. 분석방법으로는 Getis와 Ord의 통계를 공간 네트워크로 확장 및 적용한 통계 값을 사용하였다. 이 과정은 서울시 전체 버스 네트워크의 개별 흐름에 대해 각각 적용되기 때문에 대규모 연산을 위해 병렬컴퓨팅 방식을 적용한 슈퍼컴퓨터를 사용하였다. 연구 결과, 첫째, 코로나19 이후 버스 네트워크가 일부 흐름으로 집중된 경향을 보였다. 둘째, 코로나19이 후의 버스 흐름은 주거지, 농업지로의 이동은 증가하고 상업지역, 교통지역으로의 이동은 감소했음을 확인하였다. 셋째, 중심업무 지구 중 여의도 방면의 클러스터, 구로디지털단지역 방면의 클러스터와 달리, 강남일대는 코로나19 전후의 유의미한 변화가 나타나 지 않았다. 이 연구는 국내에서 처음으로 코로나19전후의 버스 네트워크 클러스터를 확인하고 변화 특징을 제시한다는 의미가 있다.
The IoT-based sensor network is one of the methods that can be efficiently applied to maintain the facilities, such as bridges, at a low cost. In this study, based on LoRa LPWAN, one of the IoT communications, sensor board for cable tension monitoring, data acquisition board for constructing sensor network along with existing measurement sensors, are developed to create bridge structural health monitoring system. In addition, we designed and manufactured a smart sensor node for LoRa communication and established a sensor network for monitoring. Further, we constructed a test bed at the Yeonggwang Bridge to verify the performance of the system. The test bed verification results suggested that the LoRa LPWAN-based sensor network can be applied as one of the technologies for monitoring the bridge structure soundness; this is excellent in terms of data rate, accuracy, and economy.
본 연구의 목적은 양돈 농장 관련 차량 이동 데이터를 활용해 농장과 도축장 간 네트워크 분석을 수행하는 데 있다. 구제역과 같은 확산 속도가 빠른 질병에 효과적으로 대응하기 위해서는 초동대응 및 선제적 차단방역이 중요하다. 이러한 방안을 마련하기 위해서는 질병 전파의 주요 매개체인 차량 이동 분석 및 질병이 확산되는 장소인 도축장과 양돈농장의 연계 관계에 대한 분석이 요구된다. 본 연구에서는 KAHIS(국가가축방역통합시스템, Korea Animal Health Integrated System)가 관리하는 차량 이동 데이 터를 기반으로 농장과 도축장 간 바이너리 매트릭스를 생성해 농장과 도축장 간 네트워크 분석을 실시하였다. Rasch model 및 Latent Class Analysis(LCA) 방법을 활용해 농장과 도축장의 위험도를 산출하고, 농장을 군집화하였다. Rasch model 분석 결과, 전라북도와 경기도 농장이 높은 위험도를 보였으며, 이는 질병 전파의 위험도가 높은 것으로도 해석 가능하다. LCA를 활용한 군집 분석 결과, 총 7개의 군집으로 분류되었다. 특히, Rasch model에서 추정된 위험도의 고려했을 때, 4번 군집이 중점적으로 관리되어야 할 대상인 것으로 나타났다. 그 다음으로는 위험도가 0.02수준인 1, 3, 5, 6번 군집이 주의해야 할 대상으로 나타났다. 위험도가 상대적으로 낮은 2, 7번 군집의 경우, 도축장을 통한 질병 전파 위험도는 낮은 수준인 것으로 해석 가능하므로 군집 단위의 관리보다는 개별 농장 단위의 모니터링 관리를 고려해볼 수 있다. 본 연구 결과에서의 양돈 농장과 도축장 간 군집 분석 결과를 고려한다면 김제, 고창과 인접한 정읍, 부안, 익산을 이어서 논산과 공주까지의 전북, 충남의 일부 지역에 대해서만 이동제한을 연장하는 세밀한 방역조치를 생각해볼 수 있었을 것이다.
국내 고도성장기 이후 본격 건설되기 시작한 사회 기반 시설물은 노후화가 빠르게 진행되고 있다. 특히 사고 발생 시 대량 인명 피해로 직결될 수 있는 교량, 터널 등의 대형 구조물들에 대한 안전성 평가가 필요하다. 하지만, 기존의 유선 센서 기반의 SHM을 개선한 무선 스마트 센서네트워크는 짧은 신호도달거리로 인해 경제적이고 효율적인 시스템 구축이 힘들다. 따라서 LoRa LPWAN시스템은 사물인터넷의 확산과 더불어 저전력 장거리통신이 각광을 받고 있으며, 이를 구조건전성 모니터링에 응용함으로써 경제적이면서도 효율적인 SHM 구축이 가능하다. 본 연구에서는 LoRa LPWAN의 구조건전성 모니터링에 적용 가능성을 검토하고 비면허 통신 대역을 사용함으로 인해 발생하는 채널간의 충돌을 해결하면서 대역폭을 효율적으로 활용할 수 있는 채널 기반의 LoRa 네트워크 운영방법을 제안한다.
본 연구는 동시출현단어(co-word) 분석을 이용하여 기술경영 분야의 연구 주제 네트워크를 구축하고, 핵심 연구 주제 및 연구 주제 간 상호연관관계를 도출한다. 동시출현 빈도수의 정규화를 통해 키워드 간 유사성을 도출하여 무방향 네트워크를 분석하는 기존연구들과는 달리 본 연구는 연관규칙분석(association rule)을 통해 키워드 간 신뢰도(confidence)를 도출하여 유방향 네트워크 분석을 수행한다. 2011~2014년 기술경영 분야 9 개 국제 학술지에 게재된 2,456개의 논문의 저자키워드를 대상으로 빈도수 상위 200개 키워드를 추출하고, 주제(THEME), 방법(METHOD), 분야(FIELD)의 세 가지 유형으로 키워드를 분류한다. 각 유형별 일원(one-mode) 네트워크를 구축하여, 함께 많이 연구가 이루어진키워드들을 찾아내고, 핵심 키워드를 도출한다. 또한 두 가지 유형의 키워드 간의 이원(two-mode) 네트워크를 구축하여, 연구 주제별로 함께 많이 활용된 방법 및 대상 분야를 탐색한다. 본 연구 결과는 최근 성숙기에 접어든 기술경영 분야의 연구 흐름 및 지식 구조를 키워드 수준에서 구체적으로 제시함으로써, 기술경영 분야 연구자들의 연구 주제 탐색 및 연구방향 설계에 활용될 수 있을 것으로 기대된다.
본 연구에서는 국내 위치기반소셜 네트워크(LBSN)의 공간분포 특징을 분석하였다. LBSN에서 발생하는 정보의 특징은 사용자들이 작성한 콘텐츠가 지역과 밀접한 관계를 갖는 내용이기에 해당 지역이 갖는 특징들을 반영하고 있다는 점이다. 본 연구에서는 가장 대표적인 서비스인 포스퀘어를 사례로 베뉴와 팁에 관한 정보를 수집하여 데이터의 지역 간의 특징 및 차이를 분석하였다. LBSN자료의 정량적인 특징인 베뉴 및 팁의 수와 함께 정성적인 특징인 베뉴의 범주, 팁의 콘텐츠에 대한 정성적인 분석을 통해 지역별로 나타나는 콘텐츠의 특징을 분석하였다. 분석결과 도시지역을 대표하는 서울특별시와 관광지역인 제주도에 있어, 베뉴의 범주와 팁 텍스트의 질적인 특징들을 확인할 수 있었다.
선박 및 해양구조물의 화물 중 많은 수가 가연성, 휘발성의 석유 및 석유 가공 화물이다. 뿐만 아니라 컨테이너 박스, 벌크화물, 차량 등의 중량 화물이 그 나머지를 차지한다. 게다가 선박은 파랑, 해류 등의 하중을 주기/비주기적으로 받기 때문에 화물의 위치 및 이동 가능성이 존재한다. 그렇기 때문에 선상 사고 위험은 육상의 산업현장 보다 훨씬 크다. 선박 및 해양구조물은 화물 및 화물의 영향으로 인한 사고 위험성이 항시 존재하기 때문에 그 모니터링과 대비가 반드시 필요하다. 이에 본 연구에서는 선상에서 선원 및 작업자의 안전을 보장하기 위해 무선센서네트워크를 도입하여 모니터링 시스템을 구축하기 위한 연구를 진행하였다.
Micro-transaction based payment model has been a key revenue model in social network game on mobile platform. The paper proposes micro-transaction based payment model based on 4P marketing strategy which have been widely used for merchandise marketing. The research will be contributed to building a systematized micro-transaction based payment model and marketing strategy for mobile social network game.