본 연구는 빅데이터 분석을 통해 지방자치단체의 스포츠도시 구현 노 력을 살펴보고자 스포츠도시에 대한 사회적 인식과 현상을 파악하는 데 목적이 있다. 이를 위해 텍스톰과 Ucinet 6을 활용하여 2021년 6월부터 2024년 6월까지 '스포츠도시'와 관련된 텍스트 자료를 통해 키워드와 토 픽을 분석하였다. 구체적으로 텍스트마이닝, 의미연결망 분석, TF-IDF, CONCOR 분석을 통해 실시하였다. 분석 결과, 첫째 '스포츠', '도시', ' 대회', '체육', '개최', '국제', '전국', '선수', '세계', '조성' 순으로 빈도 가 높게 나타났다. 둘째 ‘국제 스포츠이벤트 개최’, ‘전국대회 유치 및 개 최를 통한 도시 위상 제고’, ‘시민을 위한 생활체육 인프라 조성’, ‘스포 츠도시를 통한 지자체의 지역 경제발전’ 등 4개의 그룹이 형성되었다. 따라서, 지자체는 지역 특성을 고려하고 주민의 의견을 적극적으로 반영 하며, 지역 경제 활성화에 기여하는 스포츠도시 구현에 앞장서야 할 것 이다. 마지막으로, 지역주민의 스포츠 참여가 일상이 되도록 양질의 스포 츠 프로그램을 제공해야 할 것이다.
This study integrates TabTransformer and CTGAN for predicting job satisfaction among South Korean college graduates. TabTransformer handles complex tabular data relationships with self-attention, while CTGAN generates high-quality synthetic samples. The combined approach achieves an accuracy of 0.85, precision of 0.83, recall of 0.82, F1-score of 0.82, and an AUC of 0.88. Cross-validation confirms the model's robustness and generalizability with a mean accuracy of 0.85 and a standard deviation of 0.008. The integration of TabTransformer and CTGAN enhances predictive accuracy and model generalizability, providing valuable insights for employment policy and research.
본 연구는 북한이 2024년을 전쟁 준비 완성의 해로 선언하고 연이어 미사일을 발사하여 안보를 위협하는 상황에서, 빅데이터 분석을 활용하 여 한국 언론보도와 포털 사이트에 나타난 북핵 및 미사일 위협에 대한 담론과 인식의 특성을 실증적으로 분석하고, 그에 따른 시사점을 도출하 는 것을 목적으로 한다. 이를 위해 국내 주요 언론보도와 포털 사이트에 서 총 33,318건의 데이터를 수집하여, TF-IDF 분석을 통해 상위 50개 의 주요 키워드를 도출하고, 사회연결망 분석을 통해 각 키워드 간의 연 결 정도와 구조를 파악하였다. 분석 결과, 러시아-우크라이나 전쟁, 이스 라엘-하마스 전쟁 등 국제적 안보 불안과 동북아에서의 북-러 군사협력 및 한-미-일 군사협력의 대립 구도 등이 사회적 담론 형성에 큰 영향을 미친 것으로 나타났다. 이에 따라 한-미-일 군사협력 강화와 확장 억제 전략의 신뢰성을 높이고, 사회적 차원에서 위기의식과 안보의식의 제고 가 필요하다는 시사점이 도출되었다.
본 연구는 치유정원 및 치유정원 내 도입 프로그램과 관련된 시기별 이용행태의 변화를 파악하여 프로 그램 및 서비스 제공에 있어 개선하는데 도움이 되는 기초자료를 제공하는 것을 목적으로 한다. 이를 위해 텍스트마이닝 기법을 활용하고 『수목원정원법』시행 및 코로나19 전후를 기점으로 하여 2014 년, 2019년, 2023년 세 가지 시기로 구분하여 시계열적으로 시기별 이용행태 간의 변화를 조사하였다. 연구결과 치유정원과 치유정원 내 도입 프로그램은 이용자들에게 있어 긍정적 경험으로 나타났다. 프 로그램의 경우 초기에는 치유농업 및 원예를 중심으로 시작되었으나 시간이 지남에 따라 산림치유를 비롯하여 가드닝을 포함한 다양한 활동으로 확장되었으며, 이용자 계층 또한 다양한 계층으로 확대되 었다. 아울러 치유정원은 원예치료, 산림치유 등 다양한 자연환경 기반 치유분야의 도입요소로 사용됨 에 따라 혼용되어 사용되고 있는 것으로 나타났다. 따라서 치유정원에 대한 명확한 개념정립과 함께 다양한 계층을 고려한 프로그램이 필요한 것으로 나타났다.
Abstract Handling imbalanced datasets in binary classification, especially in employment big data, is challenging. Traditional methods like oversampling and undersampling have limitations. This paper integrates TabNet and Generative Adversarial Networks (GANs) to address class imbalance. The generator creates synthetic samples for the minority class, and the discriminator, using TabNet, ensures authenticity. Evaluations on benchmark datasets show significant improvements in accuracy, precision, recall, and F1-score for the minority class, outperforming traditional methods. This integration offers a robust solution for imbalanced datasets in employment big data, leading to fairer and more effective predictive models.
The objective of this study is to analyze the indoor air quality of multi-use facilities using an IoT-based monitoring and control system. Thise study aims to identify effective management strategies and propose policy improvements. This research focused on 50 multi-use facilities, including daycare centers, medical centers, and libraries. Data on PM10, PM2.5, CO2, temperature, and humidity were collected 24 hours a day from June 2019 to April 2020. The analysis included variations in indoor air quality by season, hour, and day of the week (including both weekdays and weekends). Additionally, ways to utilize IoT monitoring systems using big data were propsed. The reliability analysis of the IoT monitoring network showed an accuracy of 81.0% for PM10 and 76.1% for PM2.5. Indoor air quality varied significantly by season, with higher particulate matter levels in winter and spring, and slightly higher levels on weekends compared to weekdays. There was a positive correlation found between outdoor and indoor pollutant levels. Indoor air quality management in multi-use facilities requires season-specific strategies, particularly during the winter and spring. Furhtermore, enhanced management is necessary during weekends due to higher pollutant levels.
PURPOSES : The tire-pavement interaction noise (TPIN) comprises four sources, among which the tire tread vibration noise (TTVN) and air pumping noise (APN) are known to be the most influential. However, when evaluating TPIN, the noise level is estimated based on the overall noise, because general noise measurement methods cannot separate TTVN and APN. Therefore, this study aims to develop a method to separate TTVN and APN in TPIN for quantitative assessment of pavement noise. METHODS : Based on the results of our literature review and frequency band noise data measured in our study, we identified the dominant frequency ranges for TTVN and APN. Additionally, we evaluated TTVN and APN across various pavement types. RESULTS : TTVN was found to be dominant in frequency bands below 800 Hz, while APN was dominant in frequency bands above 800 Hz. Additionally, regardless of the vehicle type, vehicle speed, or pavement type, APN exhibited higher levels compared to TTVN. This result shows that APN has a more significant impact on TPIN than TTVN. CONCLUSIONS : The separation method of TTVN and APN proposed in this study can be utilized to quantitatively assess the relationship between the primary noise sources in TPIN and the characteristics of pavement texture in future research. Furthermore, it is anticipated that characteristics of low TPIN and optimal texture conditions can be proposed to mitigate TPIN, thus contributing to the development of lownoise pavements.
Until now, research on consumers’ purchasing behavior has primarily focused on psychological aspects or depended on consumer surveys. However, there may be a gap between consumers’ self-reported perceptions and their observable actions. In response, this study aimed to investigate consumer purchasing behavior utilizing a big data approach. To this end, this study investigated the purchasing patterns of fashion items, both online and in retail stores, from a data-driven perspective. We also investigated whether individual consumers switched between online websites and retail establishments for making purchases. Data on 516,474 purchases were obtained from fashion companies. We used association rule analysis and K-means clustering to identify purchase patterns that were influenced by customer loyalty. Furthermore, sequential pattern analysis was applied to investigate the usage patterns of online and offline channels by consumers. The results showed that high-loyalty consumers mainly purchased infrequently bought items in the brand line, as well as high-priced items, and that these purchase patterns were similar both online and in stores. In contrast, the low-loyalty group showed different purchasing behaviors for online versus in-store purchases. In physical environments, the low-loyalty consumers tended to purchase less popular or more expensive items from the brand line, whereas in online environments, their purchases centered around items with relatively high sales volumes. Finally, we found that both high and low loyalty groups exclusively used a single preferred channel, either online or in-store. The findings help companies better understand consumer purchase patterns and build future marketing strategies around items with high brand centrality.
본 연구에서는 국내 아스팔트 도로 현장에서 발생한 동절기 도로융기 현상의 발생 원인을 현장 규명하고 동결융해 피해를 보수하고 자 현장조사, 현장 LFWD실험 및 포장 코어채취, 지하수위 측정, 기상데이터 및 설계자료 분석 등을 실시하였다. 본 연구의 동상 원인 분석은 추후 동결융해 피해 재발방지를 위한 적정한 보수보강공법을 선정하기 위해 수행하였다. 분석과정은 지하수위 상승에 의한 동 상피해 가능성, 동결깊이 과소설계에 의한 동결융해 가능성, 포장면 표면수 유입에 의한 동결융해 가능성, 도로 외측 비포장면을 통한 수분유입과 이에 의한 동결융해 가능성으로 조사하여 동상 원인을 파악하였다. 또한 현장에서 소형충격 재하시험 LFWD(Falling Weight Deflctometer)시험을 하여 포장의 구조적 지지력을 측정하여 얻은 처짐값을 통해 포장체 구조적 능력을 분석함과 동시에 도로융기와의 연관성을 파악하여 균열분석 결과를 함께 분석하고 보수방법을 제안하였다.
빠르게 발전하는 이미지 인식 기술에도 불구하고 표 형식의 문서와 수기로 작성된 문서를 완벽하게 디지털화하기에는 아직 어려움이 따른다. 본 연구는 표 형식의 수기 문서인 선박 항해일지를 작성하는 데에 사용되는 규칙을 이용하여 보정 작업을 수행함으로 써 OCR 결과물의 정확도를 향상시키고자 한다. 이를 통해 OCR 프로그램을 통하여 추출된 항해일지 데이터의 정확성과 신뢰성을 높일 것 으로 기대된다. 본 연구는 목포해양대학교 실습선 새누리호의 2023년에 항해한 57일간의 항해일지 데이터를 대상으로 OCR 프로그램 인 식 후 발생한 오류를 보정하여 그 정확도를 개선하고자 하였다. 이 모델은 항해일지 기재 시 고려되는 몇 가지 규칙을 활용하여 오류를 식별한 후, 식별된 오류를 보정하는 방식으로 구성하였다. 모델을 활용하여 오류를 보정 후, 그 효과를 평가하고자 보정 전과 후의 데이터 를 항차별로 구분한 후, 같은 항차의 같은 변수끼리 비교하였다. 본 모델을 활용하여 실제 셀 오류율은 약 11.8% 중 약 10.6%의 오류를 식 별하였고, 123개의 오류 중 56개를 개선하였다. 본 연구는 항해일지 중 항해정보를 기입하는 Dist.Run부터 Stand Course까지의 정보만을 대 상으로 수행하였다는 한계점이 있으므로, 추후 항해정보 뿐만 아니라 기상정보 등 항해일지의 더 많은 정보를 보정하기 위한 연구를 진 행할 예정이다.
본 연구는 독일어권의 사물인터넷을 이용한 데이터 거래와 블록체인 기술로 인한 사회혁신을 조망하고자 한다. 먼저, 독일어권 국가에서의 빅 데이터와 블록체인 기술의 활용을 조사하기 위해 문헌 연구 및 선행 연 구 검토가 수행되었다. 또한, 데이터레이드(Datarade)와 같은 독일의 데 이터 회사 및 정부의 데이터 경제 관련 프로젝트(GAIA-X)에 대한 사례 연구가 진행되었다. 이를 통해 독일에서의 데이터 및 블록체인 활용 현 황을 파악하고, 각 산업 분야에서의 적용 사례를 식별하였다. 금융 산업 에서는 블록체인 기술을 활용하여 계좌 번호 및 구매 세부 정보를 안전 하게 저장하고 있으며, 부동산 산업에서는 임대 계약, 임대료 결제 확인 등을 블록체인을 통해 효율적으로 관리하고 있다. 특히 교육 부문에서 블록체인 기술의 활용에 대한 현지 사례 및 연구 결과를 종합하여 분석 하였다. 블록체인의 보안이라는 장점을 살려 학습자의 학습 성과나 평가, 성적 증명, 학습낙오자나 성적부진자의 학습활동 추적, 부정행위 방지, 스마트 계약을 통한 과제 관리, 평생학습증 및 학습이력부 제공 등의 방 식으로 이미 독일은 교육계에 혁신을 이루어나가고 있다. 교육 부문에서 의 이러한 조사 방법을 통해 독일에서의 기술 혁신 및 사회적 변화에 대 한 종합적인 이해를 제공하고자 한다. 이러한 결과들은 독일정부 주도의 데이터거래와 블록체인 분야의 기술혁신의 효과를 입증하기에 한국정부 의 산업혁신에도 활용할 수 있는 중요한 통찰을 제공할 것이다.
Purpose: Even today, cancer remains a challenge to overcome. The purpose of this study is to understand the current status of lip-oral-pharyngeal cancer in Koreans by identifying the survival rate of lip-oral-pharyngeal cancer in Koreans through long-term big data. Material and Method: This study utilized 2023 KOSIS (Cancer Registration Statistics, Ministry of Health and Welfare) academically. The 5-year relative survival rates of lip-oral-pharyngeal cancer from 1996 to 2020 were compared and analyzed at 5-year intervals. Results: The 5-year relative survival rate for lip-oral-pharyngeal cancer was 47.4% from 1996 to 2000, 54.5% from 2001 to 2005, 61.1% from 2006 to 2010, 65.5% from 2011 to 2015, and 69.7% from 2016 to 2020. From 1996 to 2005, the 5-year relative survival rate for lip-oral-pharyngeal cancer was higher than the 5-year relative survival rate for all cancers. However, in the recent 15 years from 2006 to 2020, the 5-year relative survival rate for lip-oral-pharyngeal cancer was lower than for all cancers. Conclusions: In conclusion, this long-term big data showed that the 5-year relative survival rate of lip-oral-pharyngeal cancer in Koreans has increased further in modern times. However, in order to increase the overall survival rate of all human cancers, continuous efforts to improve the survival rate of lip-oral-pharyngeal cancer are needed in the future.
본 논문에서는 대규모 실시간 매칭의 생존 게임에서 플레이를 위한 유저들의 소셜 관계에 대해 연구한다. 특 히 “사전 팀 구성”을 통한 자의적인 팀 구성이 어떤 방식으로 유저들을 연결하는 지 연구하고자 한다. 다수 의 사람 간 집단 역학에서 나타나는 특성이나 패턴에 대한 조사를 중심으로 하였으며, 개인의 특성은 보조적 인 수단으로만 사용된다. 이번 연구에서는 게임을 플레이하는 유저들의 익명화 된 대규모 데이터를 활용하며 이에 대한 간소화된 집계 방법을 제안한다. 데이터 세트에는 사전 팀 구성에 관한 11,259만 줄의 속성이 포 함되어 있으며, 데이터에서 우리는 250만개의 노드와 1,182만개의 무방향 에지가 있는 협업 네트워크를 구성 하여 대규모 게임 내 협동 네트워크를 만듭니다. 연결 정도, 경로 길이, 클러스터링 및 소속 하위 컴포넌트의 크기 등 네트워크에 관한 수치를 통해 게임내 소셜 활동에 대한 이해를 높이고자 한다. 본 논문에서는 다음 의 두가지 특성을 중심으로 결론을 제시한다. 첫째, 네트워크 내에는 대규모로 연결된 2개(전체의 44% 및 2%)와 나머지의 파편화된 하위 컴포넌트로 구성 되어있다. 이 대규모 컴포넌트 중 작은 쪽은 한국 유저로만 구성되어 있다. 둘째, 컴포넌트 크기 별 평균 연결 거리와 군집화 계수, k-core를 확인함으로써 기타 다른 네 트워크 대비 이웃 간 연결이 강하면서 전체적으로는 비교적 멀리 떨어져 있음을 확인한다.
In this study, we propose a novel approach to analyze big data related to patents in the field of smart factories, utilizing the Latent Dirichlet Allocation (LDA) topic modeling method and the generative artificial intelligence technology, ChatGPT. Our method includes extracting valuable insights from a large data-set of associated patents using LDA to identify latent topics and their corresponding patent documents. Additionally, we validate the suitability of the topics generated using generative AI technology and review the results with domain experts. We also employ the powerful big data analysis tool, KNIME, to preprocess and visualize the patent data, facilitating a better understanding of the global patent landscape and enabling a comparative analysis with the domestic patent environment. In order to explore quantitative and qualitative comparative advantages at this juncture, we have selected six indicators for conducting a quantitative analysis. Consequently, our approach allows us to explore the distinctive characteristics and investment directions of individual countries in the context of research and development and commercialization, based on a global-scale patent analysis in the field of smart factories. We anticipate that our findings, based on the analysis of global patent data in the field of smart factories, will serve as vital guidance for determining individual countries' directions in research and development investment. Furthermore, we propose a novel utilization of GhatGPT as a tool for validating the suitability of selected topics for policy makers who must choose topics across various scientific and technological domains.
As markets and industries continue to evolve rapidly, technology opportunity discovery (TOD) has become critical to a firm's survival. From a common consensus that TOD based on a firm’s capabilities is a valuable method for small and medium-sized enterprises (SMEs) and reduces the risk of failure in technology development, studies for TOD based on a firm’s capabilities have been actively conducted. However, previous studies mainly focused on a firm's technological capabilities and rarely on business capabilities. Since discovered technologies can create market value when utilized in a firm's business, a firm’s current business capabilities should be considered in discovering technology opportunities. In this context, this study proposes a TOD method that considers both a firm's business and technological capabilities. To this end, this study uses patent data, which represents the firm's technological capabilities, and trademark data, which represents the firm's business capabilities. The proposed method comprises four steps: 1) Constructing firm technology and business capability matrices using patent classification codes and trademark similarity group codes; 2) Transforming the capability matrices to preference matrices using the fuzzy function; 3) Identifying a target firm’s candidate technology opportunities using the collaborative filtering algorithm; 4) Recommending technology opportunities using a portfolio map constructed based on technology similarity and applicability indices. A case study is conducted on a security firm to determine the validity of the proposed method. The proposed method can assist SMEs that face resource constraints in identifying technology opportunities. Further, it can be used by firms that do not possess patents since the proposed method uncovers technology opportunities based on business capabilities.