기후 변화로 인해 해수면 상승과 폭풍해일 발생 빈도가 증가하면서, 해안 지역에서의 재난 위험이 심화되고 있다. 본 연구는 NOAA의 GFS(Global Forecast System) 모델과 일본 기상청의 JMA-MSM(Japan Meteorological Agency Meso-Scale Model) 데이터를 기반으로 딥 러닝 기술을 활용하여 폭풍해일 예측 알고리즘을 개발하고, 두 모델에서 제공하는 대기 데이터를 입력 변수로 사용하여 예측 성능을 비 교하는 것을 목표로 한다. CNN(Convolutional Neural Network), LSTM(Long Short-Term Memory), Attention 메커니즘을 결합한 모델을 설계하고, 조위관측소의 관측 자료를 학습 데이터로 사용하였다. 과거 한반도에 직접적인 영향을 미쳤던 네 개의 태풍 사례를 통해 모델 성능을 검 증한 결과, JMA-MSM 기반 모델이 GFS 기반 모델에 비해 서해, 남해, 동해에서 각각 평균 RMSE를 0.34cm, 0.73cm, 1.86cm, MAPE를 0.15%, 0.36%, 0.68% 개선하였다. 이는 JMA-MSM의 고해상도 자료가 지역적 기상 변화를 정밀하게 반영했기 때문으로 분석된다. 본 연구는 해안 재난 대비를 위한 폭풍해일 예측의 효율성을 높이고, 추가 기상 데이터를 활용한 향후 연구의 기반 제공이 기대된다.
본 연구에서는 박스 구조물의 부재력 예측을 위한 다양한 딥러닝 모델의 정확성을 비교하고자 하였다. 이를 위해 상용 유한 요소 프로그램인 MIDAS를 이용하여 300개의 유한요소모델을 작성하고, 수치해석을 수행하여 딥러닝 모델에 적용하기 위한 학습데이 터를 생성하였다. 또한, 딥러닝 모델의 정확성을 비교하기 위해 MLP, CNN, RNN 및 LSTM과 같은 다양한 신경망 모델과 Adam, SGD, RMSprop 및 Adamax 등 최적화 알고리즘을 교차 적용하여 16개의 딥러닝 모델을 생성하였다. 그 결과 Adam 최적화 알고리즘 이 모든 모델에서 가장 우수한 성능을 보여주었으며, 특히 MLP 모델에서 가장 높은 R2 값을 나타내었다. 이를 통해, 박스 구조물의 부재력 예측을 위한 최적의 딥러닝 모델 구성은 Adam optimizer와 MLP 구조임을 확인하였다.
The purpose of this study was to develop a more accurate model for predicting the in-situ compressive strength of concrete pavements using Internet-of-Things (IoT)-based sensors and deep-learning techniques. This study aimed to overcome the limitations of traditional methods by accounting for various environmental conditions. Comprehensive environmental and hydration data were collected using IoT sensors to capture variables such as temperature, humidity, wind speed, and curing time. Data preprocessing included the removal of outliers and selection of relevant variables. Various modeling techniques, including regression analysis, classification and regression tree (CART), and artificial neural network (ANN), were applied to predict the heat of hydration and early compressive strength of concrete. The models were evaluated using metrics such as mean absolute error (MAE) to determine their effectiveness. The ANN model demonstrated superior performance, achieving a high prediction accuracy for early-age concrete strength, with an MAE of 0.297 and a predictive accuracy of 99.8%. For heat-of-hydration temperature prediction, the ANN model also outperformed the regression and CART models, exhibiting a lower MAE of 1.395. The analysis highlighted the significant impacts of temperature and curing time on the hydration process and strength development. This study confirmed that AI-based models, particularly ANNs, are highly effective in predicting early-age concrete strength and hydration temperature under varying environmental conditions. The ability of an ANN model to handle non-linear relationships and complex interactions among variables makes it a promising tool for real-time quality control in construction. Future research should explore the integration of additional factors and long-term strength predictions to further enhance the model accuracy.
기후 변화에 의해 해수면 온도 상승, 태풍의 최고 강도 북상, 태풍 강도 증가가 나타나고 있으며, 미래의 태풍 강도 변화가 더 심화될 것으로 예상하고 있다. 본 논문에서는 기후 변화 시나리오에 의해서 발생할 수 있는 한반도 부근의 태풍 강도를 예측하기 위하여 딥러닝 기반 태풍 강도 예측 모델을 개발하였다. 기후 예측정보를 이용하여 미래 기후 변화 환경장 변화에 따른 태풍의 강도를 예측할 수 있도록 과거 환경장을 학습 자료로 사용하였다. 학습자료는 1980년에서 2022년까지의 태풍 발생 빈도가 높은 6~10월의 기상 및 해양 재분 석 월평균 자료와 Best Track 태풍 241개를 입력자료로 사용하였다. 환경장 변화에 따른 태풍 강도 예측을 위해 자료의 공간적인 특징과 시간적인 특징을 함께 고려하는 딥러닝 모델인 ConvLSTM 기반으로 모델을 개발하였다. 태풍 트랙 시퀀스의 각 이동 경로에 대한 월평균 환경장 자료를 모델에 학습하여 태풍의 중심 기압을 예측하였다. 태풍의 공간적 특성을 반영할 수 있도록 범위를 설정하여 입력자료로 학습하였으며, 5°⨉ 5°의 범위일 때 가장 좋은 결과를 보였다. 몬테카를로 방법을 이용한 민감도 실험을 통해 모델 예측에 가장 큰 영향을 미치는 변수는 SST로 확인되었다.
본 논문에서는 저 레이놀즈 수 영역에서 에어포일의 공기역학적 성능을 예측하기 위한 딥러닝 기반의 축소 모델을 제시하였다. 딥 러닝 기반 축소 모델에서 CFD 해석 결과의 높은 차원의 데이터를 효율적으로 다루기 위해 변이형 오토인코더를 결합한 합성곱 신경 망을 적용하였다. 부호화 거리 함수를 통해 에어포일의 형상과 유동 조건을 이미지 데이터화 하고, 이에 대해 합성곱 신경망을 매개변 수화 하였다. 또한, 전산유체역학 해석의 계산 비용으로 인한 부족한 훈련 데이터를 극복하기 위해 투영 기반의 비선형 매니폴드 데이 터 증강기법을 개발하였다. NACA 4계열 에어포일은 해석 예제로 고려하여 제안하는 프레임워크의 내삽과 외삽 정확도를 평가하였 으며 매니폴드 데이터 증강기법을 적용하여 프레임워크의 정확도 향상을 확인하였다.
In recent automated manufacturing systems, compressed air-based pneumatic cylinders have been widely used for basic perpetration including picking up and moving a target object. They are relatively categorized as small machines, but many linear or rotary cylinders play an important role in discrete manufacturing systems. Therefore, sudden operation stop or interruption due to a fault occurrence in pneumatic cylinders leads to a decrease in repair costs and production and even threatens the safety of workers. In this regard, this study proposed a fault detection technique by developing a time-variant deep learning model from multivariate sensor data analysis for estimating a current health state as four levels. In addition, it aims to establish a real-time fault detection system that allows workers to immediately identify and manage the cylinder’s status in either an actual shop floor or a remote management situation. To validate and verify the performance of the proposed system, we collected multivariate sensor signals from a rotary cylinder and it was successful in detecting the health state of the pneumatic cylinder with four severity levels. Furthermore, the optimal sensor location and signal type were analyzed through statistical inferences.
PURPOSES : This study develops a model that can estimate travel speed of each movement flow using deep-learning-based probe vehicles at urban intersections. METHODS : Current technologies cannot determine average travel speeds for all vehicles passing through a specific real-world area under obseravation. A virtual simulation environment was established to collect information on all vehicles. A model estimate turning speeds was developed by deep learning using probe vehicles sampled during information processing time. The speed estimation model was divided into straight and left-turn models, developed as fully-offset, non-offset, and integrated models. RESULTS : For fully-offset models, speed estimation for both straight and left-turn models achieved MAPE within 10%. For non-offset models, straight models using data drawn from four or more probe vehicles achieved a MAPE of less than 15%. The MAPE for left turns was approximately 20%. CONCLUSIONS : Using probe-vehicle data(PVD), a deep learning model was developed to estimate speeds each movement flow. This, confirmed the viability of real-time signal control information processing using a small number of probe vehicles.
기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해 수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자 이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하 여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하 였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개 선할 수 있었다.
On pig farms, the highest mortality rate is observed among nursing piglets. To reduce this mortality rate, farmers need to carefully observe the piglets to prevent accidents such as being crushed and to maintain a proper body temperature. However, observing a large number of pigs individually can be challenging for farmers. Therefore, our aim was to detect the behavior of piglets and sows in real-time using deep learning models, such as YOLOv4-CSP and YOLOv7-E6E, that allow for real-time object detection. YOLOv4-CSP reduces computational cost by partitioning feature maps and utilizing Cross-stage Hierarchy to remove redundant gradient calculation. YOLOv7-E6E analyzes and controls gradient paths such that the weights of each layer learn diverse features. We detected standing, sitting, and lying behaviors in sows and lactating and starving behaviors in piglets, which indicate nursing behavior and movement to colder areas away from the group. We optimized the model parameters for the best object detection and improved reliability by acquiring data through experts. We conducted object detection for the five different behaviors. The YOLOv4-CSP model achieved an accuracy of 0.63 and mAP of 0.662, whereas the YOLOv7-E6E model showed an accuracy of 0.65 and mAP of 0.637. Therefore, based on mAP, which includes both class and localization performance, YOLOv4-CSP showed the superior performance. Such research is anticipated to be effectively utilized for the behavioral analysis of fattening pigs and in preventing piglet crushing in the future.