This study was conducted to provide basic data for establishing water pollution prevention for effluent water from soil and stone quarries and downstream river water by investigating waste water and sewage water processing, as well as the state of legislation related to grit chamber installation and water quality analysis. The pH and DO, BOD, T-P, Total coilform of effluent water and stream water showed higher than Ⅲ class but COD and SS, T-N showed less than Ⅲ class. In addition, concentration of BOD and COD, Turbidity were increased following deepened rainfall intensity. And therefore we devise systematic reduction facility and remedy for prevention of water pollution.
As the Enforcement Ordinance of Environmental Policy Act was revised in 2013, total organic carbon(TOC) was added as an indicative parameter for organic matter in Water and Aquatic Ecosystem Environmental Criteria. Under these imminent circumstances, a regulatory standard is needed to achieve the proposed TOC limitation control water quality from the public sewage treatment plants(PSTWs). This study purposes to present the determination method for TOC effluent limitation at the PSTWs. Therefore we investigate the TOC effluent limitation of foreign countries such as EU, Germany and USA, and analyse the effluent water qualities of PSTWs. In using these TOC data, we review apprehensively the statistics-based, the technology-based, and the region(water quality)-based determination method of TOC effluent limitation for PSTWs.
In accordance with the Watershed Sewer System Maintenance Plan enforced on February 2, 2013, the different compliance concentration of effluent limit be applied to effluent discharged from public sewage treatment works(PSTWs) in each watershed on the basis of water quality thereof. With the introduction of watershed sewer system, it is necessary to set the compliance concentration of effluent limit for PSTWs situated in the watershed, by region and PSTW size, to achieve water quality criteria for regional watersheds or target water quality under TMDL program. Watershed Environmental Agencies establish the Watershed Sewer System Maintenance Plan and set the compliance concentrations of effluent limit for PSTWs under the plan. The agencies plan to apply tougher effluent BOD concentration limits in Class Ⅰ to Ⅳ areas. Effluent BOD concentration limits will be toughened from 5~10 mg/L to 3 mg/L in class Ⅱ~Ⅲ areas, from 10mg/L to 5mg/L in class Ⅳ areas. Uniform application of effluent BOD concentration limits to PSTWs in the watershed sewer system need to be complemented considering type of sewage treatment technology employed and watershed characteristics. Therefore, this study presents method to determine the compliance concentration of effluent limit from PSTWs in the watershed.
So many drinking water treatment plants are under various difficulties by new reinforced effluent standards. Since the target turbidity, much higher than annual average, for designing sludge thickener have to be set to confront high turbidity season, the sludge at thickener should be put up for a long time during usual days. So the soluble manganese and chloroform may be formed under the anaerobic environment in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. As a result, the final effluent quality and sludge volume were much improved; 41 % of manganese, 62 % of chloroform and 35 % of sludge volume. Additionally, effluent quality was improved ; 61 % of Manganese on aeration with pH control and we could make sure of stability effluent quality despite a long sludge retention time. We recommended the standard of installation sludge aeration equipment to nationally supply water treatment plant under effluent water quality problem ; Manganese, Chloroform, etc.
In this study, the antibiotic components in the final effluent from the 12 wastewater treatment facilities located in the Nakdong River basin were investigated, and the correlation between organic matters, nutrients and antibiotics was analyzed. In the final effluent of the wastewater treatment facilities, three sulfonamides antibiotics (sulfamethazine, sulfathiazole, sulfachlorpyridazine) and tetracyclines antibiotics (oxytetracycline, doxycycline) were detected. Sulfamethazine were detected at all points and ranged from 10.398 to 278.784 ng/L. Sulfathiazole were detected at 6 points (Andong, Gumi, Hapcheon, Miryang, Uiryeong, Haman), and ranged from 23.773 to 144.468 ng/L. The correlation coefficients between sulfathiazole and TSS, COD, TOC, NH3-N, NO2-N, and T-N components were high in the range of 0.73 to 0.92. The correlation coefficient between sulfamethazine and T-N was 0.48, and the correlation with the rest of the water quality components was low. The correlation coefficient between sulfamethazine and sulfathiazole was 0.78. Through this study, it was confirmed that the concentration of sulfonamides antibiotics was higher than the concentration of tetracyclines antibiotics in the final effluent of 12 wastewater treatment facilities in the Nakdong River basin, and the concentration of sulfathiazole increased with organic matters and nutrients.
To acquire preliminary data for the control of total nitrogen (TN) in S sewage treatment plant, which processes merging food waste and sewage, the effect of reject water on the total nitrogen in the effluent was examined in this study. Water quality data for the plant during the winter period were applied to calculate the mass balance. It was calculated that at least more than 231 kg/d TN should be removed to control the TN concentration in the effluent. Assuming 18 ppm as the goal TN concentration in the effluent, about 941 kg/d TN should be removed from this plant. Approximately 10% more TN should be removed than at present to achieve this result. It was observed that dewatering the filtrate had a considerably greater effect on the total nitrogen in the effluent than the reject waters. The dewatered filtrate contained 1,399kg/d TN. The contribution of the dewatered filtrate to the TN concentration in the effluent was 0.183, which was 7 to 23 times greater than the other reject waters. In addition, the amount of total nitrogen from the reject water, with the exception of the dewatering filtrate, was lower than the amount of TN that should be removed from S sewage treatment plant. Therefore, it was concluded that one of the most effective methods for controlling the TN concentration in effluent was the removal of the TN contained in the dewatering filtrate.