목적 : 본 연구의 목적은 Coronavirys Disease(COVID-19) 팬데믹을 거친 고령자의 사회적 건강의 수준의 변화궤적에 대한 잠재계층을 분류하고 잠재 계층별 특성을 분석함에 있다. 또한 이러한 사회적 건강에 영향을 미치는 예측요인을 파악하여 고령자의 사회적 건강을 증진을 위한 기초자료를 마련하고자 한다. 연구방법 : 국내 고령자의 사회적 친밀도에 따른 사회적 건강 유형을 파악하기 위해서 한국복지패널의 3 년차 종단자료를 토대로 분석하였으며, 연구대상자는 세 시점 모두를 응답한 2845명의 고령자를 대상으 로 하였다. 대상자중심접근인 성장혼합모형(Growth Mixture Model; GMM)을 적용하여 변화궤적에 따 른 잠재계층을 분석 하였고, 도출된 각 잠재유형별 특성을 파악하기 위해 χ2 분석, 분산분석을 실시하 였으며, 계층 간 차이를 유발하는 요인을 파악하기 위해 다항로지스틱 회귀분석을 실시하였다. 결과 : GMM 적용결과, 사회적 건강의 변화궤적에 대한 잠재계층은 최종 4개의 집단으로 저수준 감소-증 가 집단, 중수준 유지-증가 집단, 고수준-감소 집단, 고수준 유지’집단으로 분류되었다. 또한 사회적 건강 수준에 따라 여가만족도에서 차이가 나타나는 것으로 드러났으며, 그 외에도 연령 차이가 존재하였 다. 잠재계층분류에 영향을 미치는 영향변인을 검증한 결과, 특히 여성일수록, 종교를 가지고 있을수록, 여가만족도와 전반적 만족도가 모두 높을수록 고수준 유지 집단에 속할 확률이 높은 것으로 나타났다. 결론 : 국내 고령자의 사회적 건강은 시간이 지남에 따라 감소하는 궤적을 보이는 것으로 나타났다. 변화 궤적에 따라 4개의 집단으로 구분 지을 수 있으며, 각 잠재 유형별 연령과 여가 만족도 부분에서 집단별 차이가 드러났다.
This paper is to propose model classification and evaluation of measurement uncertainty. In order to obtain type A and B uncertainty, variety of measurement mathematical models are illustrated by example. The four steps to evaluate expanded uncertainty are indicated as following; First, to get type A standard uncertainty, measurement mathematical models of single, double, multiple, design of experiment and serial autocorrelation are shown. Second, to solve type B standard uncertainty measurement mathematical models of empirical probability distributions and multivariate are presented. Third, type A and B combined uncertainty, considering sensitivity coefficient, linearity and correlation are discussed. Lastly, expanded uncertainty, considering degree of freedom for type A, B uncertainty and coverage factor are presented with uncertainty budget. SPC control chart to control expanded uncertainty is shown.
본 연구의 목적은 기상자료(강수량, 최고기온, 최저기온, 평균기온, 평균풍속) 기반의 다중선형 회귀모형을 개발하여 농업용저수지 저수율을 예측 하는 것이다. 나이브 베이즈 분류를 활용하여 전국 1,559개의 저수지를 지리형태학적 제원(유효저수량, 수혜면적, 유역면적, 위도, 경도 및 한발빈도)을 기준으로 30개 군집으로 분류하였다. 각 군집별로, 기상청 기상자료와 한국농어촌공사 저수지 저수율의 13년(2002~2014) 자료를 활용하여 월별 회귀모형을 유도하였다. 저수율의 회귀모형은 결정계수(R2)가 0.76, Nash-Sutcliffe efficiency (NSE)가 0.73, 평균제곱근오차가 8.33%로 나타났다. 회귀모형은 2년(2015~2016) 기간의 기상청 3개월 기상전망자료인 GloSea5 (GS5)를 사용하여 평가되었다. 현재저수율과 평년저수율에 의해 산정되는 저수지 가뭄지수(Reservoir Drought Index, RDI)에 의한 ROC (Receiver Operating Characteristics) 분석의 적중률은 관측값을 이용한 회귀식에서 0.80과 GS5를 이용한 회귀식에서 0.73으로 나타났다. 본 연구의 결과를 이용해 미래 저수율을 전망하여 안정적인 미래 농업용수 공급에 대한 의사결정 자료로 사용할 수 있을 것이다.
본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성 영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.