척추동물과 유사하게 곤충도 인지질분해효소(phospholipase A2)의 촉매 작용으로 다양한 아이코사노이드를 합성한다. 그러나 일련의 아 이코사노이드 생합성과정은 척추동물과 차이를 보이는데, 이는 곤충의 인지질에는 전구물질인 아라키도닉산의 함량이 낮기 때문이다. 대신에 비 교적 풍부하게 존재하는 다가불포화지방산인 리놀레익산을 기반으로 사슬 연장 및 불포화반응으로 아라키도닉산을 합성하여 척추동물과 같이 아이코사노이드 전구물질로 이용하는 것 같다. 이렇게 해서 형성된 아라키도닉산은 다시 척추동물의 cyclooxygenase와 유사한 peroxynectin이 PGH2 형태의 프로스타글란딘(prostaglandin: PG) 전구물질을 형성하게 된다. 이후 여러 이성체 효소들의 특이적 반응에 의해 PGA2, PGD2, PGE2, PGI2, TXB2의 다양한 PG가 생성된다. 반면에 또 다른 형태의 아이코사노이드인 에폭시아이코사트리에노익산(epoxyeicosatrienoic acid: EET)은 척추동물과 유사한 단일산화효소의 산화반응으로 아라키도닉산을 전구물질로 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET를 형성하게 된다. 그러나 세 번째 아이코사노이드 부류인 류코트리엔(leukotriene)의 경우 곤충 체내 존재는 확인되었지만 생합성 과정은 아직 밝 혀지지 않았다. 이들 아이코사노이드가 곤충의 대사, 배설, 면역 및 생식에 관여하는 생리작용을 중개한다. 따라서 아이코사노이드 생합성 과정을 교란하는 물질 탐색은 새로운 살충제 개발 전략이 된다. 본 종설은 이 가운데 PG의 곤충 면역 중개 기작을 소개한다.
Two fractions (permeate and retentate) from fiber-free Aloe vera gel were separated using ultra-filtration (UF) system with tubular ceramic membrane (MWCO of 50 kDa), and their molecular properties were investigated. The retentate of UF Aloe gel was a polysaccharide-rich fraction containing about 2.3-fold higher polysaccharide content than fiber-free gel. The FT-IR and 1H NMR spectra of this fraction showed the characteristic patterns of β-binding polysaccharide and a higher degree of acetylation indicating a higher level of bioactive polysaccharide content. The
molecular weight and polydispersity of polysaccharide fraction from GPC (gel permeation chromatography) were determined to be 36.8-43.9 kDa and 1.24, respectively, indicating a kind of undispersed polysaccharide. From the SEM observation, the surface structure of polysaccharide fraction had a gel cluster-like structure with a convoluted rough surface. The molecular conformation by Congo red assay exhibited a property of helix structure confirming the existence of a higher-ordered structure as a biological activity conformation.
In the previous molecular cloning study from human salivary gland cDNA l ibrary a novel clone (C77-091) was known as a candidate gene for antimicrobial protein by GenBank database search and RNA in situ hybridization. This study is aimed to identify the molecular characteristics of C77-091 protein, which showed an antimicrobial activity on E.coli, thereby named as salivary antimicrobial protein (SAMP). SAMP consisted of a typical hydrophobic amino acid rich domain in the N-terminus, a cluster of basic amino acids, carbohydrate attachment site, a possible transglutaminase catalyzed cross-linking site, and multiple consensus sequences of phosphorylation site in the C-terminus. Western blot analysis of human organs and tissue with the monospecific antibody to the synthetic SAMP peptide showed strong interacting protein from the extracts from submandibular gland and parotid saliva but absent in the mixed saliva, and the immunohistochemical staining detected a strong positive regions in the secretory granules in the luminal cytoplasm of interlobular ductal cells of salivary gland. The SAMP was also distributed in the human sebaceous gland and prostate. These data suggest that C77-091 named SAMP gene is a novel antimicrobial protein in human salivary gland, which may play a role for the innate immunity by protecting and stabilizing the mucosal epithelium to maintain homeostasis of oral mucosa.
Background : Bokbonja the Korean black raspberry (Rubus coreanus Miquel) fruit derived product, which is native to Korea. They contain potential anti-aging, anti-oxidants, depurative activities. Bokbonja refers to an immature berry of Rubus coreanus in the Korean pharmacopeia, Rubus chingii in Chinese pharmacopeia. Recently several Rubus species are available in the Korean drug markets which could easily find their way into drug prescriptions.
Methods and Results : Hence we tried to detect the presence of these contaminating species in bokbonja products using SNP marker assisted by multi-plex PCR. We found a SNP region in the 26S region of these species and evaluated their potential to discriminate Rubus species. We designed a set of primer pairs such as, BokR primer has distinguished R.coreanus by producing a band at 852 bp and the primer sanF has differentiated R. crataegifolius by amplifying a band at 129 bp, while chiF has produced a band at 83 bp to distinguish R.chingii. These primer pairs effectively distinguished the bokbonja samples collected from various local markets as well as form drug store in Korea as well. The results were shocking as the bokbonja (R.coreanus) has a limited usage in Korea and either R. crataegifolius or R.chingii has been found in these samples. Taken together the primer pairs bokR, sanF, chiF along with 26S universal primers could effectively distinguish Rubus species in a single multiplex PCR reaction.
Conclusion : Our results based on the 26S rDNA derived SNP region have shown that, the usage of R. coreanus is extremely limited and its often mistaken or adulterated with R. crataegifolius and R. chingii. It presses a panic situation in Korean peninsula to preserve bokbonja and the species R.coreanus which is endemic and superior in efficacy.
Background : Ixeris genus has been used in traditional medicines as stomachics, sedatives, and diuretics. Ixeris dentata var albiflora is a kind of perennial herbaceous plant and one of the plants of the genus Ixeris (Asteraceae). It is well-known for edible wild vegetable in Korea, China, Japan, and Mongolia. Specially, Korean has its root and young leaf with appetizing vegetable due to bitter taste. Methods and Results : We isolated 8 genes that are involved in carotenoid biosynthesis using the Illumina/Solexa HiSeq2000 platform. In this study, a full-length cDNA clone encoding phytoene synthase (IdPSY), phytoene desaturase (IdPDS), ξ-carotene desaturase (IdZDS), lycopene β-cyclase (IdLCYB), and zeaxanthin epoxidase (IdZEP) and partial-length cDNA clones encoding lycopene ε-cyclase (IdLCYE), ε-ring carotene hydroxylase (IdCHXE), and β-ring carotene hydroxylase (IdCHXB2) were identified in I. dentata. The theoretical molecular weight (MW) and isoelectric point values of 8 genes were investigated. Sequence analyses revealed that these proteins shared high identity and conserved domains with their orthologous genes. IdPSY, IdPDS, IdZDS, IdLCYB, IdCHXB2, and IdZEP were constitutively expressed in the roots, stems, leaves, and flowers of I. dentata. Conclusion : Our study on the biosynthesis of carotenoids in I. dentata will provide basic data for elucidating the contribution of carotenoids to the considerable medicinal properties of I. dentata.
Background : Mulberry (Morus alba L.), renowned for their medicine benefits and the leave as the sole food for silkworm (Bombyx mori). To understanding the molecular mechanism of color formation and nutritive value in different mulberry fruit varieties, we use high-throughput transcriptome sequencing technique to investigated the anthocyanin and betulinic biosynthesis pathway related functional genes. In addition, the total antosyanin and betuinic acid contend were also measured. Methods and Results : The resulting cDNA library was then sequenced using an Illumina HiSeq™ 2000 system. The clean reads were assembled using Trinity software, Then perform gene family clustering to get final unigenes. The pH differential method was used to determine the total anthocyanin content (TAC) of methanol extract from the red and white mulberry, and High-performance liquid chromatography (HPLC) analysis was used to quantify the triterpenes content. In this study, total 50,149 unigenes with an average length of 1,125 nt and N50 equaling 1,861 nt were generated. Using these transcriptome sequecing, cDNAs encoding anthocyanin biosynthetic genes and triterpene biosynthetic genes were isolated. In addition, total anthocyanins and betulinic acid content were analyzed. A great amount of total anthocyanins (59.16 mg/g) were found in fully ripe fruit of Cheongil. Accumulation of betulin and betulinic acid were also detected in all stages of Cheongil and Turkey fruits with small amount. Conclusion : The results of transcriptome sequencing provide useful information at molecular lever in mulberry research, such as interesting gene discovering, marker assisted molecular breeding, and interesting metabolic pathway investigate. The gene expression results could help us understanding of the molecular mechanisms of different fruit color determining factor.
The full-length cDNA encoding Perilla frutescens limonene synthase (PFLS) (603 amino acids, GenBank accession no. D49368) was cloned. To elucidate the role of PFLS in gene regulation, we transiently transformed full-length PFLS into tobacco plants. PFLS mRNA was first detected in the intact leaves of the plants at 6 h, and the LS transcript level increased after 12 h in leaves treated with oxidative stress-related chemicals. The transient overexpression of PFLS resulted in increased transcription of NbPR1 and NbSIP in Nicotiana benthamiana leaves. Thus, our result confirmed that the infiltration of PFLS gene act as a transcriptional regulator of NbPR1 or NbSIP genes in the tobacco.
광계II(PSII)는 고등식물의 chloroplast에서 두 개의 광합성 반응중심 중의 하나이다. Chlorophyll a/b 광수확 복합체는 광계II를 위한 안테나 역할을 수행한다. 본 연구에서는 인삼의 잎조직을 제작한 cDNA library로부터 chlorophyll a/b-binding protein (Cab) 유전자를 분리하였다. 인삼 Cab유전자는 935 bp의 염기와 265개의 아미노산 잔기(pI 5.63)로 구성된 한 개의 ORF를 포함하고 있으며, 단백질의 분자량은 28.6 kDa으로 추정되었다. 인삼에서 분리한 Cab 유전자는 기존에 식물에서 보고된 유전자들과 유사성을 나타내었으며, 유사도는 68-92%로 나타났다. 아미노산 서열을 비교하여 유연관계를 분석한 결과 인삼의 Cab 유전자는 비교된 P. persica (AAC34983), A.thaliana (AAD28771), G. hirsutum (CAA38025), G. max (AAL29886), V. radiata (AAF89205) 등과 동일한 그룹으로 분리되었다.