검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 28

        2.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The exposed aggregate number (EAN) and mean texture depth (MTD) of exposed aggregate concrete pavement (EACP) influence the functional performance of EACP in terms of pavement noise and skid resistance. The selection of the exposure time of EACP is important because the designed EAN and MTD of EACP can be achieved when the exposure process is performed at an appropriate time. On the one hand, too early exposure may cause protrusions and unwanted removal of aggregates and mortar. On the other hand, late exposure may cause difficulty in exposure of the mortar. In this study, a method to determine the optimum exposure time for EACP is suggested using a non-destructive method. METHODS : A set of laboratory tests was performed to investigate the variation in EAN and MTD of EACP according to the elastic modulus obtained by non-destructive equipment. From the results of this investigation, the optimum exposure time using the non-destructive method and the exposure time window (ETW) method was suggested. In addition, the usefulness of ETW suggested by laboratory tests was verified from a field application. RESULTS : From the laboratory tests, it was found that the targets of the surface condition of EACP (EAN: 59 per 25 cm2, MTD: 1.39 mm) can be achieved when the concrete elastic modulus is higher than 20GPa. The proposed guideline using the non-destructive method was applied for the field construction of EACP and achieved similar results. CONCLUSIONS : It was found that the proposed guideline for determining the exposure time window based on non-destructive testing is useful.
        4,000원
        4.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over finegrained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade modelbased comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.
        4,000원
        6.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: It is theoretically well known all over the world, that porous hot mixed asphalt (HMA) with hydrated Lime improves moisture and rutting resistance, and reduces pothole occurrence frequency, as well as the life cycle cost (LCC). METHODS : Addictive in the two different formations of the liquid anti-stripping Agent and powder Hydrated-Lime was applied in this investigation in order to obtain relatively clear results according to their types and conditions. Firstly, the moisture conditions were set, and applied to the porous HMA mixtures with hydrated lime (anti-stripping agent). Next, it was followed by a non-destructive test with the application of three freeze-thaw cycles, which were individually carried out thrice to compare the results of the dynamic moduli. Lastly, the hydrated lime effect related to moisture sensibility to porous HMA has been verified through the analysis of the modulus results regarding the change rate of dynamic modulus per n-cycle. RESULTS: It is clear from this investigation, that the dynamic modulus is inversely proportional to the change in temperature, as the graph representing the rigidity of the thermorheologically simple (TRS) material showed gradual decline of the dynamic modulus with the increase in temperature. CONCLUSIONS: The porous HMA mixture with the anti-stripping agent (hydrated Lime) has been found to be more moisture resistant to freezing and thawing than the normal porous HMA mixture. It is clear that the hydrated lime helps the HMA mixture to improve its fatigue resistance.
        4,200원
        7.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The dynamic modulus for a specimen can be determined by using either the non-destructed or destructed testing method. The Impact Resonance Testing (IRT) is the one of the non-destructed testing methods. The MTS has proved the source credibility and has the disadvantages which indicate the expensive equipment to operate and need a lot of manpower to manufacture the specimens because of the low repeatability with an experiment. To overcome these shortcomings from MTS, the objective of this paper is to compare the dynamic modulus obtained from IRT with MTS result and prove the source credibility. METHODS: The dynamic modulus obtained from IRT could be determined by using the Resonance Frequency (RF) from the Frequency Response Function (FRF) that derived from the Fourier Transform based on the Frequency Analysis of the Digital Signal Processing (DSP)(S. O. Oyadigi; 1985). The RF values are verified from the Coherence Function (CF). To estimate the error, the Root Mean Squared Error (RMSE) method could be used. RESULTS : The dynamic modulus data obtained from IRT have the maximum error of 8%, and RMSE of 2,000MPa compared to the dynamic modulus measured by the Dynamic Modulus Testing (DMT) of MTS testing machine.. CONCLUSIONS: The IRT testing method needs the prediction model of the dynamic modulus for a Linear Visco-Elastic (LVE) specimen to improve the suitability.
        4,000원
        13.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.
        4,000원
        15.
        2002.03 구독 인증기관 무료, 개인회원 유료
        4,000원
        16.
        2001.09 구독 인증기관 무료, 개인회원 유료
        4,300원
        17.
        1998.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지하구조물의 건전성을 평가하기 위한 비파괴시험으로써 탄성응력파를 이용한 충격반향탐사법을 수치해석적인 방법을 통하여 수행하였다. 즉, 일면만으로 접근 가능한 터널 면에서의 충격가진과 동적응답의 측정으로 이질면을 포함한 내부의 상태를 예측할 수 있다. 연구의 수행은 탄성거동을 하는 매질 내부에서 전파되는 탄성응력파의 특성을 이해하고, 이를 동적 유한요소해석으로 모형화하여 충격반향탐사법을 수치해석적으로 수행한다. 이질재료가 2개의 층을 이루고 있는 경우 표면층의 두께를 쉽게 측정할 수 있었으며, 구조물의 병진운동, 휨운동과 구조물 내에서 다중반사되는 탄성응력파에 의한 복합적인 영향을 받는 터널과 같은 원통형 구조물에서 동적응답의 주파수 특성으로부터 터널라이닝 내부에 형성된 공동의 위치와 크기의 예측이 가능하였다. 수치해석적인 방법과 병행하여 다양한 형태의 경계조건을 가지는 구조물에 대한 충격반향탐사법의 실험을 수행할 경우 실제적인 문제에 적용, 건전성 평가의 지표를 마련할 수 있을 것으로 사료된다.
        4,300원
        18.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        Rebound hammer test, SonReb method and concrete core test are most useful testing methods for estimate the concrete compressive strength of deteriorated concrete structures. But the accuracy of the NDE results on the existing structures could be reduced by the effects of the uncertainty of nondestructive test methods, material effects by aging and carbonation, and mechanical damage by drilling of core. In this study, empirical procedure for verifying the in-situ compressive strength of concrete is suggested through the probabilistic analysis on the 268 data of rebound and ultra-pulse velocity and core strengths obtained from 106 bridges. To enhance the accuracy of predicted concrete strength, the coefficients of core strength, and surface hardness caused by ageing or carbonation was adopted. From the results, the proposed equation by KISTEC and the estimation procedures proposed by authors is reliable than previously suggested equation and correction coefficient.
        19.
        2013.10 서비스 종료(열람 제한)
        The purpose of this study is to suggest standardization solution about non-destructive testing of concrete structures. For this, we analyzed the present condition of non-destructive testing in domestic and based on it, we suggested a draft of standard plan for improvement of reliability and quantitative analysis in the result of non-destructive testing
        20.
        2013.04 서비스 종료(열람 제한)
        The purpose of this study is to suggest new improving solution about problems of non-destructive test through the analysis of present status of non-destructive test and report. For this, we analyzed problems of non-destructive test operating into concrete structures and collected data by questionnaire of non-destructive test at the inspection and diagnosis work for the diagnosis company and suggested plans for improvement based on analyzed opinion and result.
        1 2