PURPOSES : The purpose of this study is to analyze the effect of ions in emulsion asphalt on recycling cold asphalt concrete and suggest the possibility of using anionic and nonionic emulsion asphalt.
METHODS : In this study, indirect tensile strength, toughness, tensile strength ratio, and dynamic immersion tests were conducted to determine the effects of cation, anion, and non-ion emulsified asphalt on the cold recycled asphalt mixture. Crack resistance was evaluated through indirect tensile strength and toughness tests and the tensile strength ratio and dynamic immersion test were evaluated through tensile strength ratio and dynamic water immersion test.
RESULTS : Indirect tensile strength and toughness measurement results demonstrated that the mixture using anion and non-ion emulsified asphalt tended to be higher than that using cation emulsified asphalt; this is due to the high content of reclaimed asphalt pavement with a cationic or ionic surface, which is related to the use of cation-emulsified asphalt in the mixture and has shown a low strength tendency. The tensile strength ratio measurement demonstrated that the mixture using non-ion emulsified asphalt tended to be approximately 15 % higher than that of the anion mixture. This demonstrated that the chemical additive used in the mixture showed a complete hydration reaction with the distribution to the mixture. The dynamic immersion test indicates that the aggregate film rate of asphalt is highly influenced by the surface electric charge of the new aggregate while the ionicity effect appears to be insignificant, at 75 - 85 %, when circular aggregates are used.
CONCLUSIONS : High reclaimed asphalt pavement content in cold recycled asphalt mixture, as well as non-ion and anionic emulsified asphalt, is advantageous, reducing cracking and improving moisture resistance. It is believed that anions and non-ions may be better utilized than applying the existing criteria to the cold temperature recycled asphalt mixture with high reclaimed asphalt pavement content. In addition, if the scope of the emulsified asphalt is expanded, various additives can be used, which will require analysis of materials, such as fertilizers and additives.
PURPOSES: The object of this study is to select appropriate inorganic materials, and find the best mixing formula to secure fast curing time and enough initial strength, and then to evaluate the durability of the asphalt mixtures according to the degree of addition of the compound manufactured by the determined blending ratio.
METHODS : The breaking time and reactivity between seven kinds of inorganic minerals, and the selected recycled aggregate and emulsified asphalt were compared to determine the best initial curing strength for the mixtures. Then, three inorganic materials were chosen as the materials that provide good breaking time and reactivity, and the best mixing formula for the three materials was determined. The chemical composition of the compound manufactured using the mixing formula was analyzed by energy dispersive x-ray system method. Finally, indirect tensile strength (ITS) test was performed (for two days) at room temperature to determine the proper amount of additives that will provide the best initial strength.
RESULTS: From the results of the reactivity test, the best mixing formula (A:C:G = 60:30:10) for the three selected inorganic materials with short braking time and high reactivity was determined. The four types of cold reclaimed asphalt mixtures for ITS testing were manufactured by adding the inorganic material compounds at 0%, 3%, 5%, and 7%, and the ITS values were measured after two curing days. The ITS values at 5% and 7% were 0.308 MPa and 0.415 MPa, respectively. The results of quality control tests (Marshall stability, porosity, flow value, etc.) at 5% and 7% satisfied the specification criterion for the cold recycled asphalt mixtures.
CONCLUSIONS : The selected inorganic materials (A, C, and G) and the best mixing formula (A:C:G = 60:30:10) accelerated the reaction with emulsified asphalt and shortened the curing time. Depending on the inorganic material used, the breaking time and reactivity can be directly related or unrelated. This is because of the chemical compositions of recycled aggregates, infiltrated foreign matter, and chemical reactions between the inorganic materials and other materials. Therefore, it is important to select the proper materials and the best mixing formula when evaluating the characteristics of the practically used materials such as recycled aggregates, inorganic materials, and emulsified asphalt.
PURPOSES : The purpose of this study is to examine the manufacturing method for emulsified asphalt and its bond performance by analyzing the properties of the emulsifier used to produce cold recycled asphalt mixtures.
METHODS: In this study, four types of slow-setting cationic emulsifiers, a microsurfacing emulsifier, and six types of nonionic emulsifiers were used to manufacture emulsified asphalt. Because each emulsifier requires its own unique effective dose to provide the best performance, the optimum asphalt content for each effective dose was determined. Then, the optimum asphalt content for the emulsified asphalt mixture was determined by the tests to check its basic physical properties. By using the determined optimum content, asphalt mixtures were manufactured and dynamic immersion and tensile strength tests were conducted on the mixtures to analyze the influence of the emulsifier on the physical properties of the mixtures.
RESULTS : The dynamic immersion test results showed a coating ratio of 54-85%, which is considerably higher than that of using ordinary straight asphalt. The tensile strength test yielded noncompliant values less than 0.4 N/mm, which is the standard requirement for dry indirect tensile strength. The correlation analysis between the dynamic immersion and tensile strength ratio tests showed very high correlation of 0.78. The correlation between the emulsifier content and water resistance performance was low, between -0.55 and -0.24.
CONCLUSIONS : While the storage stability improves with increasing emulsifier, the effectiveness proportional to the increase is weaker as the emulsifier increases. The performance testing of asphalt residues before and after manufacturing the emulsified asphalt showed no significant change. It is proved that the emulsified asphalt maintains high coating resistance according to the dynamic immersion test results. In addition, according to the results of tensile strength ratio, cold recycled asphalt mixtures manufactured by the materials normally and commercially used are not compliant with the national standard specification; thus, additional effective materials will be needed for quality compliance. In conclusion, it is evident that the dynamic immersion and tensile strength ratio tests have good correlation, but the quantity of emulsifiers used is not related to the level of moisture resistance.
PURPOSES: The purpose of this study is to evaluate the mechanical properties of a cold-recycling asphalt mixture used as a base layer and to determine the optimum emulsified-asphalt content for ensuring the mixture’s performance.
METHODS: The physical properties (storage stability, mixability, and workability) of three types of asphalt emulsion (CMS-1h, CSS-1h, and CSS-1hp) were evaluated using the rotational viscosity test. Asphalt emulsion residues, prepared according to the ASTM D 7497-09 standard, were evaluated for their rheological properties, including the G*/sinδand the dynamic shear modulus (|G*|). In addition, the Marshall stability, indirect tensile strength, and tensile-strength ratio (TSR) were evaluated for the cold-recycling asphalt mixtures fabricated according to the type and contents of the emulsified asphalt.
RESULTS: The CSS-1hp was found to be superior to the other two types in terms of storage stability, mixability, and workability, and its G*/sinδ value at high temperatures was higher than that of the other two types. From the dynamic shear modulus test, the CSS-1hp was also found to be superior to the other two types, with respect to low-temperature cracking and rutting resistance. The mixture test indicated that the indirect tensile strength and TSR increased with the increasing emulsified-asphalt content. However, the mixtures with one-percent emulsified-asphalt content did not meet the national specification in terms of the aggregate coverage (over 50%) and the indirect tensile strength (more than 0.4 MPa).
CONCLUSIONS : The emulsified-asphalt performance varied greatly, depending on the type of base material and modifying additives; therefore, it is considered that this will have a great effect on the performance of the cold-recycling asphalt pavement. As the emulsified-asphalt content increased, the strength change was significant. Therefore, it is desirable to apply the strength properties as a factor for determining the optimum emulsified-asphalt content in the mix design. The 1% emulsified-asphalt content did not satisfy the strength and aggregate coverage criteria suggested by national standards. Therefore, the minimum emulsified-asphalt content should be specified to secure the performance.
PURPOSES : The purpose of this study is to estimate the optimum content of an inorganic additive for cold-recycled asphalt mixtures and evaluate its performance.
METHODS: An indirect tensile test, a tensile-strength ratio test, and an indirect tensile-fatigue test were conducted on cold-recycling asphalt mixtures with various additives.
RESULTS: The laboratory performance tests indicated that granulated blast-furnace slag mixed with inorganic and cement activators provided optimum performance. The performance results of the cold-recycled asphalt pavement were similar to the inorganic and cement activators’ performance in terms of the indirect tensile strength, tensile strength ratio, and indirect tensile-fatigue test.
CONCLUSIONS : Overall, the performance of a cold-recycled asphalt mixture using inorganic additives and emulsion asphalt was comparable to a warm-recycled asphalt mixture. However, more experiments aimed at improving its performance and studying the effect of the inorganic additives must be conducted.
이상기후의 원인으로 주목되는 온실가스 배출 억제를 위하여 세계 각 국가들은 1992년 유엔기후변화협약 발효, 2005년 교토의정서 발효, 2015년 파리기후협약을 체결하였다. 온실가스 배출 저감을 위한 각종 협약에 따라 우리나라는 2008년부터 2020년까지 온실가스 감축목표를 30%로 설정하였다. 국내의 경우 2016년을 기준으로 생산된 아스팔트 콘크리트는 약 2,300만톤이며, 이중 재활용 아스팔트 혼합물로 재사용된 양은 약 187만톤으로 전체 생산량 대비 약 8.1%에 불과하다. 국내 아스팔트 플랜트 504개 중 208개가 재활용 아스팔트 플랜트로 인증, 운영되고 있으며 추후 사회적, 기술적, 제도적인 변화를 통하여 재활용 아스팔트 혼합물의 사용량이 증가될 것으로 기대된다. 현재 상온 재활용 아스팔트 혼합물은 대부분 시멘트를 첨가하여 생산하고 있다. 시멘트를 첨가제로 사용할 경우 저렴하고 높은 강도를 발현할 수 있지만 시멘트 생산 및 운반과정에서 다량의 이산화탄소가 발생하고 높은 시멘트 사용률로 포장의 조기 균열 발생과 장시간 양생이 필요함에 따라 조기 교통개방이 불가능한 문제점이 발생하고 있다. 따라서 상온 재활용 아스팔트 혼합물 생산 및 시공과정에서 폐 아스팔트의 재사용 및 온실가스 배출 저감에 따른 경제적 효과와 함께 양생시간의 단축과 조기강도 발현을 위한 무기질 첨가제의 연구가 필요하다. 본 연구는 상온 재활용 아스팔트에 적용하는 첨가제를 개발하기 위해 무시멘트와 무기질 첨가제를 적용한 2가지 혼합물을 중온 재활용 아스팔트 혼합물의 실내 공용성 시험 결과와 비교평가 하였다. 실내 공용성 시험을 위하여 선회다짐기와 마샬다짐기를 이용하여 시편을 제작하였으며, 공극률, 간접인장강도, 수분저항성(TSR)시험, 동탄성계수, 피로시험 등의 실내 공용성 평가를 진행하였다. 동탄성계수 시험은 아스팔트 혼합물의 거동과 재료의 특성을 분석하기 위한 시험으로 5개의 온도조건(-10, 5, 20, 40, 54℃)과 6개의 하중 주기(0.1, 0.5, 1, 5, 10, 20Hz)를 통하여 혼합물의 E 와 Master Curve를 도출하였으며, 피로 시험은 10Hz의 사인파 응력을 20℃의 조건에서 시험을 수행하였다. 간접인장강도와 수분저항성(TSR) 시험은 KS F 2398를 준수하여 수행하였다. 상온 재활용 아스팔트는 혼합할 때 물을 사용하여 다짐을 하기 때문에 양생과정 중 수분증발로 추가 공극이 발생한다. 따라서 KS F 2398에 명시된 7±0.5%를 맞추어 수분저항성 시험을 진행하기에는 어려움이 있으므로 시편 공극률의 70∼80% 사이로 수분처리 후 실험을 실시하였다.
비가열식 상온 도로포장 재활용 공법인 상온 현장 재활용 공법(CIR), 상온 플랜트 재활용 공법(CCPR), 상온 전체 포장층 재활용 공법(FDR)들은 경제적으로 시공 비용이 저렴하고 공사기간을 단축시키며 환경오염 영향을 적게 미치는 장점이 있다. 상온 재활용 공법에 사용되는 아스팔트 바인더는 크게 유화아스팔트(emulsified asphalt)와 폼드 아스팔트(foamed asphalt)가 적용되며, 이들은 재생 아스팔트 혼합물의 재생첨가제 또는 안정제로서의 기능을 하기도 한다. 유화아스팔트는 물속에 아스팔트 바인더 입자(1-3μm)가 계면활성제(surfactant)에 의해 상분리 현상을 일으키지 않고 분산 상태를 유지하고 있는 액체 상태의 아스팔트이기 때문에 상온에서 별도의 가열 없이 편리하게 사용할 수 있다. 하지만 상온 재활용 아스팔트 콘크리트에 대한 공학적 구조 해석을 위한 정량적 데이터가 부족하여 공학적 공용성 분석이 이루어지지 못해 널리 활성화 되는데 한계점을 가지고 있다. 본 연구는 상온 재활용 아스팔트 콘크리트용 개질 유화아스팔트의 개발을 목적으로 개질재(천연고무, 합성고무 등)에 의한 유화아스팔트 바인더의 정량적 물성 성능 평가를 위하여 기초적 실험평가를 실시하였다. 아스팔트 바인더(AP-3)를 개질 첨가제인 천연고무, 합성고무 A와 B를 각각 3% 첨가하여 개질시키고 유화 과정을 시켜 개질 유화아스팔트를 제조하였다. 이렇게 제조된 개질 유화아스팔트의 증발잔류물(평균 61%)에 대해 침입도와 연화점 시험을 실시하였다. 시험결과 천연고무와 합성고무 B로 개질 유화아스팔트의 연화점이 66℃과 67℃로 합성고무 A(51℃)보다 높게 나타났고, 침입도는 천연고무로 개질된 유화아스팔트가 49로 합성고무(A) 66와 합성고무(B) 74로 측정되었다. 천연고무로 개질된 유화아스팔트의 물성 성능이 가장 우수하였고 혼합성 및 저장안전성도 양호하였다. 천연고무, 합성고무 A와 B를 적용한 개질 유화아스팔트의 물성 성능평가를 통해 기초적 자료를 확보하였고, 향후 상온 재활용 아스팔트 콘크리트 혼합물에 대한 공용성능 평가를 통해 공학적 공용성 분석을 진행할 예정이다.
PURPOSES:The objective of this study is to evaluate the performance of asphalt mixtures containing inorganic additive and a high content of reclaimed asphalt pavement (RAP).METHODS:The laboratory tests verified the superior laboratory performance of inorganic additive compared to cement, in cold recycled asphalt mixtures. To investigate the moisture susceptibility of the specimens, tensile strength ratio (TSR) tests were performed. In addition, dynamic modulus test was conducted to evaluate the performance of cold recycled asphalt mixture.RESULTS:It was determined that NaOH solution mixed with Na2SiO3 in the ratio 75:10 provides optimum performance. Compared to Type B and C counterparts, Type A mixtures consisting of an inorganic additive performed better in the Indirect tensile strength test, tensile strength ratio test, and dynamic modulus test.CONCLUSIONS:The use of inorganic additive enhances the indirect strength and dynamic modulus performance of the asphalt mixture. However, additional experiments are to be conducted to improve the reliability of the result with respect to the effect of inorganic additive.
PURPOSES :The purpose of this study was to determine the optimum mix design of the content of 100 % reclaimed asphalt pavement (RAP) for spray injection application with different binder types.METHODS:Literature review revealed that spray injection method is the one of the efficient and economical methods for repairing a small defective area on an asphalt pavement. The Rapid-Setting Polymer modified asphalt mixtures using two types of rapid setting polymers-asphalt emulsion and a quick setting polymer asphalt emulsion-were subjected to the following tests to determine optimum mix designs and for performance comparison: 1) Marshall stability test, 2) Retained stability test, 3) Wet track abrasion test, and 4) Dynamic stability test.RESULTS AND CONCLUSIONS :Type A, B, and C emulsions were tested with different mix designs using RAP aggregates, to compare the performances and determine the optimum mix design. Performance of mixtures with Type A emulsion exceeded that of mixtures with Type B and C emulsion in all aspects. In particular, Type A binder demonstrated the highest performance for WTAT at low temperature. It demonstrated the practicality of using Type A mixture during the cold season. Furthers studies are to be performed to verify the optimum mix design for machine application. Differences in optimum mix designs for machine application and lab application will be corrected through field tests.
PURPOSES:The objective of this study is to ascertain the curing period of cementless cold central plant recycled asphalt base-layer, using mechanical analyses and specimen quality tests on the field.METHODS :Cold central plant recycled asphalt base-layer mixture was produced in the plant from reclaimed asphalt, natural aggregate, filler for the cold mix, and the modified emulsion AP using asphalt mix design and plant mix design. In order to examine the applicability of the curing period during the field test, the international standards for the possibility of core extraction and the degree of compaction and LFWD deflection were analyzed. Moreover, Marshall stability test, porosity test, and indirect tensile strength test were performed on the specimens of asphalt mix and plant mix design.RESULTS :The plant production process and compaction method of cementless cold central plant recycled asphalt base-layer were established, and the applicability of the optical moisture content for producing the mixture was verified through the field test. In addition, it was determined that the core extraction method of the conventional international curing standard was insufficient to ensure performance, and the LFWD test demonstrated that the deflection converges after a two-day curing. However, the back-calculation analysis reveals that a three-day curing is satisfactory, resulting in a general level of performance of dense asphalt base-layer. Moreover, from the result of the specimen quality test of the asphalt mix design and plant mix design according to the curing period, it was determined that the qualities satisfied both domestic and international standards, after a two-day curing. However, it was determined that the strength and stiffness after three-day curing are higher than those after a two-day curing by approximately 3.5 % and 20 %, respectively.CONCLUSIONS:A three-day curing period is proposed for the cementless cold central plant recycled asphalt base-layer; this curing period can be demonstrated to retain the modulus of asphalt-base layer in the field and ensure stable quality characteristics.
2014년 온실가스 배출 최소화를 위한 포장도로 연구 중 친환경 저비용 에코아스팔트 도로포장 기술 개 발에서 저비용 상온 재활용 포장 공법 개발에 대해서 연구를 하고 있으며, 기존의 상온 재활용 포장의 배 합설계인자 영향분석을 바탕으로 본 연구에서는 기층 배합설계 검증 및 예비 시험포장에 대한 문제점과 해결방안에 대해 제시하였다.
본 연구진의 선행연구를 바탕으로 본 연구에서는 배합설계의 목적을 도로포장통합지침의 중교통량 품 질기준을 만족하기 위해 국내외 배합설계법의 자료 분석하여 배합설계법을 결정하였다. 배합설계법 선정 을 위해 입도기준을 기층의 역할목적을 감안하여 본 연구진의 선행연구에 제시된 기층의 입도상하한선 및 연구결과를 적용하였다. 결정된 배합설계 절차를 이용하여 저교통량과 중교통량 기층의 배합설계를 실시 하여, 실험실에서 결정된 입도설계를 바탕으로 혼합물 제작 후 마샬다짐기를 이용한 공시체를 만들어 실 내시험을 진행하였다. 실험 결과 공극율과 마샬안정도를 이용한 수침안정도 등이 기준에 부합하는 것을 확인하였으며, 예비 시험포장을 위한 배합설계를 진행 후 플랜트에서 생산된 시험포장 혼합물을 이용, 실 내시험을 통하여 배합설계를 검증하였다.
생산 플랜트 내 일부구간에서 예비시험포장을 진행하였다. 배합설계 검증 결과로 생산된 혼합물의 입 도분포가 상한선을 초과하였다. 예비 시험포장을 진행할시 혼합물 생산이 소규모로 이루어지다보니 보통 1배치 생산당 2~3분이 소요하지만, 예비 시험포장 당일 1배치당 45분의 생산시간을 소요하여 혼합물의 경화가 발생하였으며, 포설당시에는 생산된 혼합물의 기층 색깔 및 포설과정은 좋았으나 양생과정에서 에 코 채움재의 경화특성에 의한 조기경화가 발생하였다. 또한 생산 과정의 개질재 투입시 고형분의 분리가 발생하여 고형분이 침전이 되어 있었고, 개질 유화특성에 따른 혼합과정에 대한 개선이 필요함을 알 수 있었다. 인장강도비 개선을 위한 소석회의 경우 혼합과정과 다짐방법의 미비로 인한 포장표면으로 포장체 수분과 분리되어 블리딩 현상처럼 올라오는 등의 현상이 발생하였다.
본 연구진의 선행 연구 중 배합설계인자의 영향을 바탕으로 중교통량 대비 최적 배합설계를 제안하였 고, 최적입도설정 및 배합설계 결과로 석회석분 채움재에 비해 에코 채움재가 약 4%이상 공극율이 작아 지는 것을 확인할 수 있었다. 본 연구 결과를 토대로 예비 시험포장을 실시한 결과 플랜트 생산체계의 개 선안을 제안하였다. 개선된 CCPR(Cold Central Plant Recycled) 시스템 하에서 생산된 혼합물의 실내시 험을 통한 결과와 추후 본 시험포장을 통한 현장 적용성을 검증할 것이다.
최근 10년간 전세계적으로 아스팔트 포장을 재활용하는 기술이 급속도로 확산되고 있으며 노후 아스팔트 포장을 폼드 아스팔트 또는 유화 아스팔트를 사용하여 현장에서 바로 100% 재활용하는 현장 상온 재생 아스팔트 포장기술이 다양하게 적용되고 있다. 특히, 아이오와 주에서는 교통량이 적은 지방도로에서 기존 포장의 수명을 연장 시켜주는 현장 상온 재생 아스팔트 공법을 많이 적용하고 있다. 일반적으로 현장 상온 재생 아스팔트 포장층은 수분의 침투나 교통하중으로부터 보호하거나 포장설계를 만족시키기 위해 가열 아스팔트 포장으로 덧씌우기를 한다. 일반적으로 현장 상온 재생 아스팔트 포장층 위에 가열 아스팔트 포장으로 덧씌우기 할 시기는 대부분에 감독자들은 일정한 양생기간 또는 최대 함수비에 근거하여 결정하고 있다. 따라서, 본 연구에서는 감독자가 최적에 덧씌우기 아스팔트 포장 시기를 결정할 수 있도록 현장 상온 재생 아스팔트 포장층의 현장 함수비를 간단하게 측정하여 덧씌우기 시기를 결정할 수 있는 수분 감소계수를 개발하는 것이다. 먼저, 현장 상온 재생 아스팔트 포장층의 함수비를 TDR 함수량계를 사용하여 측정하였고 현장 상온 재생 아스팔트 포장이 시공되는 기간 동안에 강우량, 대기온도, 습도, 바람속도 등 기상정보를 수집하였다. 마지막으로 현장 상온 재생 아스팔트 포장의 초기 함수비, 대기온도, 습도, 바람속도를 변수로 하는 수분 감소계수를 개발하였다. 실제 현장 상온 재생 아스팔트 포장에서 측정한 값을 사용하여 개발한 수분 감소계수는 감독자가 연속적으로 현장 상온 재생 아스팔트 포장층의 함수비를 측정하지 않고 최적의 덧씌우기 포장 시점을 결정할 수 있다.