Thermal protection systems (TPS) are a group of materials that are indispensable for protecting spacecraft from the aerodynamic heating occurring during entry into an atmosphere. Among candidate materials for TPS, ceramic insulation materials are usually considered for reusable TPS. In this study, ceramic insulation materials, such as alumina enhanced thermal barrier (AETB), are fabricated via typical ceramic processing from ceramic fiber and additives. Mixtures of silica and alumina fibers are used as raw materials, with the addition of B4C to bind fibers together. Reaction-cured glass is also added on top of AETB to induce water-proof functionality or high emissivity. Some issues, such as the elimination of clumps in the AETB, and processing difficulties in the production of reusable surface insulation are reported as well.
In the present paper, the natural fiber materials that can be replaced to reduce the weight of the vehicle are analyzed by bubble charts of - and - , and the possibility of alternative application of materials is investigated. For this purpose, the driving energy and fuel efficiency of the vehicle using the data of K model analyzed. In addition, the effect of vehicle weight on fuel efficiency was analyzed through the dynamic analysis approach of the vehicle. From the research results, the following results were obtained. Most of natural fibers have lower density and equal tensile strength and strain than metal materials. Therefore, the application rate of natural fiber materials should be increased in consideration of the application purpose and material characteristics of the vehicle. The major variables that greatly influence driving energy and fuel efficiency were fuel efficiency improvement of about 10% in order of speed, rolling resistance and mass. In addition, when steel is lightened by 10%, fuel efficiency improvement of up to maximum 4.5% is shown in the order of CFRP, Al, Ti.
건축 및 토목 구조물의 대표 재료인 콘크리트의 핵심지표인 구조 성능을 개선하기 위해 많은 연구가 진행되고 있다. 아울러 구조물의 크기가 커질수록 강도가 높은 고기능 콘크리트의 필요성이 높아지고 있으며, 특히 내구성과 내후성이 우수한 콘크리트 재료의 개발이 필요한 실정이다. 따라서, 본 연구에서는 강섬유와 함께 파라-아라미드 원사를 이용하여 피복 및 꼬임, 원사 데니어 및 섬유 길이에 대한 차별화된 원사가공을 적용한 복합재료인 슈퍼섬유를 콘크리트에 혼입하여 구조적인 성능을 평가하고자 하였다. 본 연구를 통해 최적화된 슈퍼 섬유로 보강된 슈퍼 콘크리트는 도로, 교량, 상수도 및 하수도 등 기존 SOC 의 수리 및 보강에 적용될 유망한 성장 기술 분야가 될 것으로 예상된다.
This study performed an inverse detection of fiber stiffness degradation that occurs due to damages in free vibrating composite structures. Five unknown parameters are considered to determine the fiber stiffness which is a modified form of the bivariate Gaussian distribution function. The proposed approach is more feasible than the conventional element-based damage detection method from the computational efficiency because a finite element analysis coupled with a genetic algorithm using a small number of unknown parameters is performed. The numerical examples show that the proposed technique is a feasible and practical method, which can prove the location of a damaged region as well as inspect the distribution of deteriorated fiber stiffness although there is a small difference in dynamic characteristics between damaged and undamaged structures.
Carbon composites for flexible fiber heating element were examined to improve the electrical conductivity in this study. Carbon composites using carbon black, denka black, super-c, super-p with/without CNF or dispersant such as BCS03 and Sikament-nn were prepared. Carbon composite slurry was coated on plane film and yarns(cotton, polyester) and the performances of prepared heating materials were investigated by checking electrical surface resistance, adhesion strength. The plane heating element using carbon black under natural drying condition(25℃) had better physical properties such as surface resistance(185.3 Ohm/sq) and adhesion strength(above 90%) than those of other carbon composite heating elements. From these results, polyester heating element coated by carbon black showed better electrical line resistance(33.2 kOhm/cm) than cotton heating element. Then, it was found that polyester heating element coated by carbon black with CNF(3 wt%) and BCS03(1 wt%) appeared best properties(0.604 kOhm/cm).
강철보다 10배 강하지만, 무게는 5분의 1
비행기부터 컴퓨터까지 ‘꿈의 신소재’ 탄소섬유 전쟁
-탄소 섬유로 미래를 지배하라
“가볍게 이동하며 연비는 향상” 항공기⋅車에 주로 쓰였지만 이젠 아파트⋅풍력발전도 사용
-한국, 일본을 잡아라
도레이 등 日업체들이 세계 빅3 꾸준한 투자로 34년만에 이익
태광⋅효성 등 한국도 뛰어들어… 일본처럼 길게 보고 승부해야
지난 9월 IT업계에 애플이 맥북과 아이패드 외장재로 신소재를 사용할 것이란 소문이 퍼져 업계의 비상한 관심을 끌었다. 애플의 새 제품이 소재와 디자인 혁신을 주도, 또 한 번 시장을 뒤흔들 것이란 내용이었다. 얼마 뒤 일본 IT 웹사이트인 맥오타카는 애플이 이 신소재를 사용한 자전거 제조업체 대표를 복합소재 수석 엔지니어로 채용했다고 보도했다. 애플이 입을 닫아 사실 여부는 확인되지 않았지만 소문은 신빙성을 더했다. 여기서 말한 신소재는 탄소섬유(Carbon Fiber)다. 강철보다 강도는 10배 높으면서 무게는 5분의 1에 불과해 ‘꿈의 신소재’로 불린다. 거의 100%에 가까운 탄소원자로 구성된 섬유로한 가닥의 탄소섬유 실에는 수천 가닥의 탄소섬유가 꼬여져 있어 강도가 높다.
전기방사한 나노섬유 웹은 가는 섬유직경과 수많은 미세공극 구조로 인해 우수한 투습성 및 차단 성능을 나타내며, 초박막 초경량의 특성을 갖는다. 이러한 특성 때문에 새로운 투습방수 소재로서 전기방사한 나노섬유 웹을 이용하고자 하는 시도가 이루어지고 있으며, 본 연구에서는 나노섬유 웹 처리소재의 역학적 특성을 측정하고 이를 기존 투습방수 소재와 비교함으로써 기능적 성능과 더불어 감성적 성능을 만족시키는 새로운 투습방수 소재 개발을 위한 기초자료를 제시하고자 하였다. 실험실 제작(lab-scale) 나노섬유 웹과 대량생산(commercial) 나노섬유 웹을 이용하여 웹 밀도와 기반 직물, 적층 구조, 라미네이팅 여부 등에 차이를 두어 다양한 전기방사 나노섬유 웹 처리소재를 제작하였다. 이들 시료에 대해 KES-FB system을 이용하여 역학적 특성을 평가하고, 이를 기존 투습방수 소재인 고밀도 직물, PTFE 라미네이팅 직물, PU 코팅 직물의 역학적 특성치와 비교하였다. 연구 결과, 실험실에서 제작한 나노섬유 웹 처리소재는 부피감이 있으면서 유연하였고, 대량생산된 나노섬유 웹을 라미네이팅한 소재는 신장 변형이 적은, 치밀한 구조의 소재인 것으로 나타났다. 또한 고밀도 직물과 실험실 제작 나노섬유 웹 처리소재는 낮은 인장선형성과 굽힘강성, 전단강성으로 유사한 거동을 나타내어, 기존 PU 코팅이나 PTFE 라미네이팅 직물에 비해 뻣뻣함이 덜하면서 유연하고 부드러운 태를 가지는 것으로 해석되었다. 따라서 전기방사 나노섬유 웹 처리소재가 일정 수준의 방수성을 확보한다면 기능적 성능과 감성적 성능을 모두 충족시키는 새로운 투습방수 소재로 이용될 수 있을 것으로 사료된다.