The purpose of this study is to present a plan for reducing noise between floors of apartment houses in Korea and to examine the method for evaluating noise blocking performance rating between floors. The definition of floor noise and classification method of floor noise can be described, and floor noise can be distinguished into lightweight impact sound and heavy impact sound. The wall-type structure, which is mainly adopted in domestic apartments, relatively transmits vibration caused by impact sources rather than using columns and beams, so noise problems between floors are relatively higher than systems using columns and beams. Three representative methods for reducing and blocking floor noise are described, and criteria for evaluating the effectiveness of floor noise reduction by each method are described. In addition, the method for noise reduction and blocking grades for each construction method currently applied in Korea was described, and as a result, it was judged that the domestic rating evaluation method was not suitable for the current domestic situation, and a new evaluation method and standard were needed.
High-rise buildings are equipped with TMD (Tuned Mass Damper), a vibration control device that ensure the stability and usability of the building. In this study, the seismic response control performance was evaluated by selecting the design variables of the TMD based on the installation location of the twisted irregular building. To this end, we selected analysis models of 60, 80, and 100 floors with a twist angle of 1 degree per floor, and performed time history analysis by applying historical seismic loads and resonant harmonic loads. The total mass ratio of TMDs was set to 1.0%, and the distributed installation locations of TMDs were selected through mode analysis. The analysis results showed that the top-floor displacement responses of all analysis models increased, but the maximum story drift ratio decreased. In order to secure the seismic response control performance by distributed installation of TMDs in twisted irregular buildings, it is judged that the mass ratio distribution of TMDs will act as a key variable.
Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
Recent advances in computer technology have made it possible to solve numerous challenges but require faster hardware development. However, the size of the classical computer has reached its physical limit, and researchers' interest in quantum computers is growing, and it is being used in various engineering fields. However, research using quantum computing in structural engineering is very insufficient. Therefore, in this paper, the characteristics of qubits, the minimum unit of quantum information processing, were grafted with the crow search algorithm to propose QCSA (quantum crow search algorithm) and compare the convergence performance according to parameter changes. In addition, by performing the optimal design of the example truss structure, it was confirmed that quantum computing can be used in the architectural field.
목적 : 적외선 차단렌즈의 근적외선 차단율과 시감투과율을 제조방식 및 근적외선 차단제 첨가 여부에 따라 조 사하고, 근적외선 차단렌즈의 개발 방향에 대하고 논하였다. 방법 : 시중에서 유통되고 있는 국내외 브랜드의 근적외선 차단렌즈 20종(C-type 10종, M-type 5종, TMtype 5종)을 대상으로 가시광선에서 근적외선에 이르는 380~1,400 nm 영역에서 5 nm 간격으로 투과율을 측정한 후, KS B ISO 13666 표준에 따라 근적외선 차단율과 시감투과율 구하였다. 결과 : 근적외선 차단율은 TM—type이 평균 62.3%로 가장 우수하였지만, 착색렌즈에 미러코팅을 한 관계로 시 감투과율은 평균 20.2%로 매우 낮았다. M—type의 경우는 근적외선 차단제의 첨가로 인한 근적외선 차단효과가 명확하게 나타나기는 했지만, 근적외선 차단제를 첨가하지 않은 C-type의 렌즈의 근적외선 차단율보다 그 성능이 떨어졌고, 시감투과율 또한 낮았다. 근적외선 차단제가 첨가되지 않은 C-type의 렌즈들에서 근적외선 차단율은 우 수하였을 뿐만 아니라, 시감투과율 또한 무반사 렌즈 수준으로 높게 나타났다. 결론 : 최적화된 코팅설계가 적용되면 AR 렌즈 수준의 높은 시감투과율을 보이면서 TM-type의 근적외선 차단 율을 능가하는 우수한 근적외선 차단렌즈를 개발할 수 있다는 점에서 근적외선 차단렌즈의 설계 방향은 C-type이 가장 효과적이라 할 수 있다.
FRP 복합재료 중 CFRP(탄소 섬유 강화 플라스틱)는 현재 RC 구조물의 내부 및 외부 보강재로서 그리드 형태로 활용되고 있다. 그러나 CFRP 그리드에 대한 성능평가 기준은 매우 미흡하여 FRP 보강근 기준을 사용하고 있다. 따라서 본 연구에서는 그리드 가닥 수와 경계조건과 변수를 고려하여 CFRP 그리드의 인장 성능을 평가하기 위한 실험이 수행되었다. 가닥 수는 1, 2, 3가닥에 대한 인장시험이 수행되었으며, 경계조건의 경우 모르타르, 에폭시, 에폭시 + 모르타르로 변수를 지정하였다. 인장시험을 통하여 최적 가닥 수 및 최적 경계조건으로 개발한 시편을 토대로 고온 노출 시간에 따라 CFRP 그리드의 인장 성능 평가가 수행되었다. 온도는 130°C 로 유지되었으며, 5개의 시편을 각각 70분(Case 2), 100분(Case 3), 120분(Case 4), 150분(Case 5) 고온에 노출하여 비 고온 노출 시편 과 비교하였다. 실험 결과, 비 고온 노출 시편과 비교하여 Case 5에서는 인장강도와 탄성계수가 각각 최대 51.32% 및 44.4% 감소한 것으로 나타났다.
현대 건설산업 분야에서 철근콘크리트는 반영구적인 재료로 인식되어 가장 많이 사용되고 있다. 하지만 콘크리트의 노후화 및 수분 용해 현상 등으로 생긴 균열을 통해 강재의 부식이 발생하게 된다. 이러한 부식은 철근콘크리트의 거동과 구조물의 내구성을 저하시키기 때문에 근본적인 원인인 강재를 대체할 필요가 있다. 최근 건설산업에서 복합재료는 높은 강도, 낮은 중량, 부식에 대한 우 려가 없어 주목받고 있는 재료이다. 복합재료는 섬유와 기지재료로 사용되는 수지에 따라 재료의 특성이 달라지게 되며 이중 탄소섬유 를 활용한 복합재료 CFRP은 복합재료 중 가장 뛰어난 성능을 보여준다. 따라서 본 연구에서는 뛰어난 성능을 보여주는 CFRP와 경제 성을 고려하여 탄소섬유와 유리섬유를 혼합한 CFRP Hybrid를 사용하여 강재의 대체품으로 사용가능성을 확인하고자 한다. 재료의 특 성을 비교하기 위하여 ASTM 규정에 따라 인장시험과 압축시험을 수행하고 반복하중에 대한 저항을 확인하기 위하여 인장반복시험과 압축반복시험을 수행한다. 이때 측정된 응력, 영구변형 등을 그래프로 도식화하고 강재와 비교분석을 진행하였다.
For the OPR1000, a standard power plant in Korea, an analytical model of the containment building considering voids and deterioration was built with multilayer shell elements. Voids were placed in the vulnerable parts of the analysis model, and the deterioration effects of concrete and rebar were reflected in the material model. To check the impact of voids and deterioration on the seismic performance of the containment building, iterative push-over analysis was performed on four cases of the analytical model with and without voids and deterioration. It was found that the effect of voids with a volume ratio of 0.6% on the seismic performance of the containment building was insignificant. The effect of strength reduction and cross-sectional area loss of reinforcement due to deterioration and the impact of strength increase of concrete due to long-term hardening offset each other, resulting in a slight increase in the lateral resistance of the containment building. To determine the limit state that adequately represents the seismic performance of the containment building considering voids and deterioration, the Ogaki shear strength equation, ASCE 43-05 low shear wall allowable lateral displacement ratio, and JEAC 4601 shear strain limit were compared and examined with the analytically derived failure point (ultimate point) in this study.
Existing reinforced concrete (RC) building frames constructed before the seismic design was applied have seismically deficient structural details, and buildings with such structural details show brittle behavior that is destroyed early due to low shear performance. Various reinforcement systems, such as fiber-reinforced polymer (FRP) jacketing systems, are being studied to reinforce the seismically deficient RC frames. Due to the step-by-step modeling and interpretation process, existing seismic performance assessment and reinforcement design of buildings consume an enormous amount of workforce and time. Various machine learning (ML) models were developed using input and output datasets for seismic loads and reinforcement details built through the finite element (FE) model developed in previous studies to overcome these shortcomings. To assess the performance of the seismic performance prediction models developed in this study, the mean squared error (MSE), R-square (R2), and residual of each model were compared. Overall, the applied ML was found to rapidly and effectively predict the seismic performance of buildings according to changes in load and reinforcement details without overfitting. In addition, the best-fit model for each seismic performance class was selected by analyzing the performance by class of the ML models.
For low-rise piloti-type buildings that suffered significant damage in the Pohang earthquake, the seismic performance of those designed by codes issued before and after the earthquake has been recently revised. This study started with the expectation that many of the requirements presented in the current codes may be excessive, and among them, the spacing of column stirrup could be relaxed. In particular, the recently revised design code of concrete structures for buildings, KDS 41 20 00, suggests that the column stirrup spacing is 1/2 of the minimum cross-sectional size or 200 mm, which is strengthened compared to KBC 2016, but relaxed than the current KDS, 41 17 00, which is 1/4 of the minimum size or 150 mm. As a result of the study, it was found that the target performance level was sufficiently satisfied by following the current standards and that it could be satisfied even if the relaxed spacing was followed. Therefore, the strict column stirrup spacing of KDS 41 17 00 could be relaxed if a wall other than core walls is recommended in the current guideline for the structural design of piloti-type buildings.
In the present study, a calorimeter was used to experimentally investigate the heating capacity and COP changes according to the pipe length of a variable capacity A/C system with long pipes. Cooling capacity, COP, and compressor discharge temperature were obtained by changing pipe lengths and loading duties at fixed indoor and outdoor temperatures. And the operation status and cycle change process of the A/C system were investigated using some experimental data and P-h diagrams. As the pipe length changes, the heat transfer within the cycle and the operating load of the compressor change, so the heating capacity and COP of the system change. At the same loading duty, as the pipe length increases, the heating capacity and COP decrease. As the loading duty increased, the heating capacity increased almost linearly, but the COP decreased. Since the long pipe experimental value for the compressor discharge temperature has a temperature deviation of up to 1 7℃(50m, L/D : 10/10) from the correlation equation, the optimal correlation equation must be derived through additional research.
A cyclone separator is a device that separates solid particles from a fluid using centrifugal force and gravity in its inner chamber. Among cyclone separators, the separator that uses water as a working fluid is called as hydrocyclone separator, which has been developed for the purpose of dehydrating solid mixtures with a proportion of solids floating in liquids greater than 1, such as soil, coal, and cement slurry. In this paper, a hydrocyclone was designed based on the previously proposed design method, and how different the performance is from the targeted value was investigated using the computational fluid dynamics.
This study evaluates the analytical performance of a newly developed miniaturized disposable U-tube for an automated blood viscometer and compares it to conventional viscometers. Whole blood viscosity (WBV), essential for circulatory function, exhibits non-Newtonian behavior, posing challenges for measurement at low shear rates. The blood viscometer, based on a scanning capillary tube method, used disposable U-tubes to measure viscosities across a shear rate range of 1s⁻¹ to 1,000s⁻¹. Precision evaluation showed stable coefficients of variation (CV) across different viscosity levels. Repeatability assessment indicated consistent CV values, demonstrating the reliability of the device. The agreement with the LV-III Brookfield viscometer and MCR 92 Rheometer was analyzed using Bland-Altman plots, which revealed minor systematic biases and consistent differences across the measurement range. Correlation analysis using Passing-Bablok regression showed high correlation coefficients (R > 0.96) with regression slopes close to 1. The newly developed miniaturized disposable U-tube exhibits excellent precision, reliable repeatability, and high correlation with established methods, enhancing laboratory productivity and offering potential for clinical applications. Further studies with human blood samples are recommended to confirm its clinical applicability.
In the present study, a calorimeter was used to experimentally investigate the cooling capacity and COP changes according to the pipe length of a variable capacity A/C system with long pipes. Cooling capacity, COP, and compressor discharge temperature were obtained by changing pipe length and loading duty. And the operation status and cycle change process of the A/C system were investigated using some experimental data and P-h diagrams. In long pipes, the pressure drop increases and the operating load on the compressor increases. Additionally, at the same loading duty, cooling capacity and COP decrease and the compressor discharge temperature increases. As loading duty increases, cooling capacity and compressor power consumption increase. Since the temperature deviation between the experimental value and the correlation equation for the discharge temperature of the long-pipe compressor shows a maximum of 10.5℃(50m, L/D : 20/0), the existing correlation equation needs to be modified.
Wall-embedded ventilators, which are commonly used for ventilation of buildings, greatly damage the aesthetics of the building due to pollutants such as dust and grease sticking to the fan and gaps of the ventilator as the period of use increases. For this aesthetic reason, it is often installed in a place that is not easily visible to people, and if the ventilation fan is not properly arranged and installed, it is difficult to maintain indoor air in an optimal state. In this study, the effect of the arrangement of ventilators on indoor ventilation performance was investigated. Comparisons were made between the case where three ventilators were concentrated and the case where they were spaced apart at regular intervals. It was found that the ventilation performance was different depending on the location where the ventilators were installed.
상선에 비해 잦은 변침을 하고 어획물로 인한 중량 및 무게중심의 변화와 같은 다양한 운항조건을 가진 어선의 경우, 조종성능 은 선박 운항 시에 매우 중요한 역할을 한다. 소형 어선의 사고는 2022년 기준 전체 해상 사고의 약 60%를 차지하며, 이는 부족한 조종성 능으로 인한 충돌과 좌초 사고가 주요 원인이다. 특히 10톤 미만의 소형선박에서 발생한 사고는 전체 사고의 약 65%를 차지하는데, 소형 어선의 조종성능 관련 기준이 부재하여 이를 정확히 평가하기엔 어려움이 있다. 이에 본 연구에서는 4.99톤급 소형 어선을 대상선으로 선 정하여 3D-CAD로 모델링 한 후, 상용 수치해석 프로그램인 STAR-CCM+를 활용하여 선박의 조종운동 시뮬레이션 환경을 구축하였다. 이 를 바탕으로 다양한 표준재화상태와 무게중심을 고려하여 10° / 10° 및 20° / 20° zigzag test와 35° turning test를 수행하였고, 선체 중량이 증가 함에 따라 변침성능이 감소하고 선회성능이 향상되는 경향을 분석하였다. 그 중, 만재출항과 부분만재입항 상태에서는 상대적으로 선회 성능이 부족한 결과를 확인하였다. 이를 바탕으로 소형선박의 안전한 운항을 위한 표준재화상태와 무게중심을 고려한 조종성능의 평가 및 그에 상응하는 표준화된 조종성능 평가 기준의 필요성을 제시하였다. 또한, 본 연구의 조종성능 평가 결과가 소형선박의 조종성능 평 가 기준 선정을 위한 기초자료로 활용될 수 있을 것으로 기대된다.
본 논문에서는 조선 후기의 대표적인 전통목구조인 수원 화령전 운한각의 구조성능을 평가하였다. 운한각의 가구구성 방식에 맞추 어 3차원 구조해석 소프트웨어인 midas Gen으로 해석모델을 정교하게 구축하였다. 정적해석으로 주요 구조부재의 안전성과 사용성 을 평가하였고, 고유치해석으로 동적거동특성을 평가하였다. 대부분의 부재가 안전성 및 사용성 기준을 여유 있게 만족하고 있으나, 외목도리에서 휨응력비가 기준을 20.7% 초과하고 있어 이 부재에 대해서는 장기적인 모니터링이 필요하다고 사료된다. 운한각의 고 유주기는 1.079초로 비슷한 규모의 전통목구조보다 약간 긴 편이며, 특히 후면 화방벽의 영향으로 2차모드에서 비틀림이 발생한 것으 로 분석된다.
There are two primary sludge drying methods such as the direct heating microwave method and the indirect heating steam one. In this study, the drying treatment facility at sewage treatment plant A applied both of these drying methods. The research aimed to investigate the optimal operation approach for the drying facility, considering the input sludge and the moisture content data after the drying process. Moisture content and removal rate data were executed at the research facility from January 2016 to December 2018. First, the microwave, a direct heating drying method, performed intensive drying only on the outer surface of the sludge by directly applying heat to the sludge using far infrared rays, so effective sludge drying was not achieved. On the other hand, the steam method of the indirect heating method used steam from a gas boiler to maximize the utilization of the heat transfer area and reduce energy of the dryer, resulting in an effective sludge drying efficiency. The sludge moisture content brought into the sludge drying facility was about 80%, but the moisture content of the sludge that went through the drying facility was less than 10% of the design standard. Therefore, the steam method of the indirect heating method is more effective than the microwave method of the previous direct heating method and is more effective for maintenance It has proven that it is an efficient method of operating construction facilities.
This study aims to present a performance based design for apartments through evacuation safety assessment and damage impact assessment due to acrylonitrile leakage. In the evacuation safety evaluation, ASET was analyzed as 25 min or more and 60 min or less when the ventilation rate was once per hour, and RSET was 22.6 min. Evacuation safety is satisfied when the number of ventilation per hour is less than 1, so it is necessary to design the number of ventilation to be 1 or less. In the damage impact assessment, the 0% structural collapse rate due to overpressure was measured to be between 71m and 90m, and the 0% fatality rate due to radiant heat was measured to be between 136m and 353m. Therefore, maintain a safe distance of 353m or more.
국토 대부분인 산지로 구성된 국내의 특성상 대형 산불 사례가 지속적으로 보고되고 있으며, 동해안에서 다발적으로 발생하 는 과거 대비 최근 서해안의 산림원이 확대됨에 따라 점차 전국화되고 있는 실정이다. 본 연구에서는 이러한 산불 발생 주기의 증가로 인한 산지에 설치되어 있는 사방댐의 산불에 의한 영향성 평가를 수행하였다. 대상 구조물은 선행 연구에서 사용된 강재, GFRP 및 CFRP를 사용한 투과형 사방댐으로 선정하였으며, 각 재료별 구조재를 사용한 투과형 사방댐의 안전성 평가를 위해 상용 유한요소해석 프로그램인 ABAQUS를 활용하였다. 해석 결과, 600℃ 수준에서 파괴가 발생한 강재 구조재에 반해 FRP 구조재는 800℃ 이상에도 파 괴되지 않음을 확인하였다. 또한, FRP 구조재는 강재 대비 10.30%∼11.20% 가량 낮은 응력 수준을 보였으며, 최대 변위는 약 73.1배, 17.9배 증가하는 것으로 측정되었다. 콘크리트로 구성된 댐체의 경우, 구조재의 설치부에 응력이 집중됨을 알 수 있으며, 압축 측은 모 든 구조재에서 안전한 것으로 나타났지만, 인장 측은 600℃ 이상에서 모든 구조재의 댐체 콘크리트가 파괴됨을 확인하였다. 따라서, 사 방댐 설계 시 이러한 강도 감소를 충분히 고려할 필요가 있을 것으로 사료된다. 댐체와 구조재가 연결되는 고정부의 경우, GFRP 및 CFRP 구조재가 강재 구조재 대비 약 82.43%, 67.63% 감소된 반력을 보이는 것으로 확인되었다. 이러한 결과는 FRP 구조재의 높은 변위가 하중을 소산하여 고정부에 적은 영향을 미치는 것으로 생각된다. 결론적으로, FRP 구조재를 사용하는 것은 기존 강재 구조재 대비 고온 저항성 측면에서 다양한 이점을 얻을 수 있으나, 수치해석적 접근법으로 평가된 결과이므로 향후 지속적인 연구로 신뢰성을 검증할 필요가 있다.