검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 μm and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 oC using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 oC using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.
        4,000원
        2.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of 1~25μm. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.
        4,000원
        4.
        1998.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        후막 GaN성장에 있어서 uniformity와 controllability를 향상시키기 위해 GaCI3를 이용한 수직형 HVPE(Hyderide Vapor Phase Epitaxy)를 자체 제작하여 후막 GaN의 성장특성을 조사하였다. 성장온도를 1000˚C에서 1075˚C까지 변화시키면서 성장된 GaN의 특성을 분석한 결과 온도가 증가할수록 표면특성과 광학적 특성은 향상되었으나 DCXRD( Double Crystal X-Ray diffractometer)의 FWHM(Full width of Half Maximum)은 온도와 무관하게 500-1000arcsec을 나타내었다. GaN의 성장이 1x1cm의 시편에 걸쳐 균일하게 이루어 졌으며, 또한 반응기 내부의 기하학적 특성이 시편의 표면특성과 성장속도에 많은 영향을 끼침을 알 수 있었다. 성장속도는 GaCI3의 유량에 비례하였으나, 1000˚C에서 1075˚C로 온도를 증가조건하에서 최대 28μm/hr의 GaN성장을 얻을 수 있었다.
        4,000원
        5.
        1995.11 KCI 등재 서비스 종료(열람 제한)
        In this study, a vertical type LPE system has been developed for III-V semiconductor compounds single crystal growth. On the basis of the experience & basic study using this system, the system modification has been carried out for a ultra thin multi-layer single crystal. The temperature fluctuation was within ±0.006℃ at 800℃, temperature uniformity for graphite boat around was within ±0.15℃ at 650℃, and cooling rate was controllable from 2.2℃/min to 0.05℃/min. As a result it is considered to satisfy the condition to grow a ultra thin layer single crystal of III-V semiconductor compounds.
        6.
        1992.06 KCI 등재 서비스 종료(열람 제한)
        Shortening the lasing wavelength(particularly below infrared ; the visible region) of laser diodes is very attractive because it can provide a wide range of applications in the fields of optical information, measurement, sensor, the development of medical instrument, and optical communication through plastic fibers. According to the recent researches on the field, InGaAsP/GaAs was suggested as a material for red-light laser. In this study, in order to grow InGaAsP/GaAs epitaxial layer on InGaAsP/GaAs by LPE, we used GaP and InP two phase solution technique for 670nm and 780 nm region, respectively. Through the X-ray diffraction measurement for the epitaxial layer grown from the experiments, we found that the lattice mismatch of In0.46Ga0.54As0.07P0.93/GaAs and In0.19Ga0.81As0.62P0.38/GaAs was about +0.3% and +0.1%, respectively.
        7.
        1990.06 KCI 등재 서비스 종료(열람 제한)
        In this paper the results for thin multi-layer InGaAsP(1.3μm)/InP crystal growth by vertical liquid epitaxial growing furnance have been presented. The growth rates of InGaAsP layer and InP layer at cooling rate of 0.3℃/min and the growing temperature of 630℃ were obtained as 0.11 μm/min and 0.06 μm/min, respectively, by the uniform cooling with two phase solution technique.