검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructures and cyclic voltammograms of Al-Si/C nano-composites were investigated as the anode of lithium ion batteries. Al-Si nanoparticles were prepared by the arc-discharge method. Al-Si/C nanoparticles were obtained by coated Al-Si nanoparticles with the precursor of glucose (C6H12O6) as carbon source. It was indicated that the post carbon coating treatment can reduce Al2O3 film on Al-Si particles, and new phase Al4C3 formed in the process can activate the inactivated materials of electrode in a certain extent.
        4,000원
        2.
        2008.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study focused on the synthesis of a bismuth-antimony-tellurium-based thermoelectric nanopowders using plasma arc discharge process. The chemical composition, phase structure, particle size of the synthesized powders under various synthesis conditions were analyzed using XRF, XRD and SEM. The powders as synthesized were sintered by the plasma activated sintering. The thermoelectric properties of sintered body were analyzed by measuring Seebeck coefficient, specific electric resistivity and thermal conductivity. The chemical composition of the synthesized Bi-Sb-Te-based powders approached that of the raw material with an increasing DC current of the are plasma. The synthesized Bi-Sb-Te-based powder consist of a mixed phase structure of the , and phases. This powder has homogeneous mixing state of two different particles in an average particle size; about 100nm and about 500nm. The figure of merit of the sintered body of the synthesized 18.75 wt.%Bi-24.68 wt.%Sb-56.57 wt.%Te nanopowder showed higher value than one of the sintered body of the mechanically milled 12.64 wt.%Bi-29.47 wt.%Sb-57.89 wt.%Te powder.
        4,000원
        3.
        2008.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A simple method to deposit carbon nanotube films uniformly on large area substrates using an arc discharge method is reported in this paper. The arc discharge method was modified to deposit carbon nanotube films in situ on the substrates. The substrates were scanned several times over the arcing point for a uniform film thickness. Deposition was carried out under variable dc bias conditions at 600 torr of H2 gas. The thickness uniformity of the single-wall carbon nanotube films as characterized by a four-point probe was within 30% deviation. The morphology and crystal quality of the single-wall carbon nanotube film were also characterized by field emission scanning electron microscopy and Raman spectroscopy.
        4,000원
        4.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study was focused on the synthesis of a zirconium-based alloyed nanopowder by the plasma arc discharge process. The chemical composition, phase structure, particle size and hydrogen sorption property of the synthesized powders under various synthesis conditions were analyzed using XRF, XRD, SEM, XPS and the ASTM-F798 method. The chemical composition of the synthesized Zr-V-Fe-based powders approached that of the raw material with an increasing hydrogen fraction in the powder synthesis atmosphere. The synthesized powder consist of a mixed phase structure of the phases. This powder has an average particle size of about 20 nm. The synthesized nanopowder showed getter characteristics, even though it had a lower hydrogen sorption speed than the getter powder. However, the synthesized Zr nanopowder with an average particle size of 20 nm showed higher hydrogen sorption speed than the getter powder.
        4,000원
        6.
        2004.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe nanopowders were successfully synthesized by plasma arc discharge (PAD) process using Fe rod. The influence of chamber pressure on the microstructure was investigated by means of X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The prepared particles had nearly spherical shapes and consisted of metallic cores (a-Fe) and oxide shells (FeO), The powder size increased with increasing chamber pressure due to the higher dissolution and ejection rate of H and gas density in the molten metal.
        4,000원
        9.
        2003.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate the effect of the parameters of the plasma arc discharge process on the particle formation and particle characteristics of the iron nano powder, the chamber pressure, input current and the hydrogen volume fraction in the powder synthesis atmosphere were changed. The particle size and phase structure of the synthesized iron powder were studied using the FE-SEM, FE-TEM and XRD. The synthesized iron powder particle had a core-shell structure composed of the crystalline -Fe in the core and the crystalline in the shell. The powder generation rate and particle size mainly depended on the hydrogen volume fraction in the powder synthesis atmosphere. The particle size increased simultaneously with increasing the hydrogen volume fraction from 10% to 50%, and it ranged from about 45nm to 130 nm.
        4,000원