This study was performed to test the flame retardancy of zelkova sarrata-based materials by the treatment of ammonium salts. Zelkova sarrata plate was soaked by the treatment with three 20 wt% ammonium salt solutions consisting ammonium chloride (AMSL), monoammonium phosphate (MAPP), and diammonium phosphate (DAPP), respectively, at the room temperature. After the drying specimen treated with chemicals, combustion properties were examined by the cone calorimeter (ISO 5660-1). When the ammonium salts were used as the retardant for zelkova sarrata, the flame retardancy improved due to the treated ammonium salts in the virgin zelkova sarrata. However the specimen shows increasing CO over virgin zelkova sarrata and It is supposed that toxicities depend on extents. Also, the specimen with ammonium salts showed the higher total smoke release (TSR) than that of virgin plate. Of specimens treated with ammonium salts the ammonium chloride handled the test side was considered a improved inhibitory effect of combustion.
The ion exchangers supported on silica gel containing primary, secondary, or tertiary amine groups show a behaviour that is weakly acidic, while the quaternary salts are strongly acidic. These properties change according to the hydrophilicities of the modifier functional groups. Ammonium salt derivatives supported on silica gel were prepared from silica modified with 3-Aminopropyltriethoxysiliane and N-3-(Trimethoxysilyl)propylehtylene diamine. The preparation and the ion exchange properties of two systems were discussed. Two systems have different hydrophilicities and contain ammonium chloride derivatives of 3-amminopropyltriethoxysilane and N-3-(triehtoxysilyl)propyl ethylene diamine supported on silica gel, SA+/Cl- and SA+/Cl-, respectively. The high affinity to perchlorate ion presented by the SA+/Cl- through the equilibrium studies of ion exchange led us to its application as an ion selective electrode for the perchlorate ion. The determination of the perchlorate ion in the presence of other anions and in complexes is very difficult. Few analytical methods are available and most of them are indirect. Both materials showed potential use as an ion exchanger; they are thermically stable, achieve equilibrium rapidly in the presence of suitable exchanger ions, and are easily recovered.
In this work, the properties as polishing wax for automobile of O/W type microemulsion containing wax, liquid paraffine and quaternaryammonium salt was investigated. The microemulsions were prepared at 96~97℃ by the phase inversion method, and polyoxyethylene(20) sorbitan monooleate (POE(20)SMO) and distearyl dimethyl ammonium chloride(D.D.A.C) as the emulsifiers were used. The mean particle size of the rnicroemulsions was about 7±0.5nm and as the properties of polishing wax, gloss increased degree, water resistant gloss degree, initial and final contact angle after water resistance were tested. The result was that the value of water resistantance and contact angle were decreased with increasing amount of POE(20)SMO and D.D.A.C., while the gloss degree values did not affected. And the rnicroemulsion blended with mono ethylene glycol(MEG) of 5~15wt% showed smaller particle size and more stable particle size distribution than without MEG. Finally, this microemulsion showed more excellent values of gloss degree, the water resistant gloss degree and contact angle, than two kinds of commercial polishing wax for automobile.
We studied on the preparation and evaluation of O/W type microemulsion containing "wax, liquid paraffine and quaternary ammonium salt". And also it was obtained to stability of microemulsions by mono ethylene glycol(MEG) addition. The microemulsions were generally prepared at 96~97℃ by the phase inversion method. We used polyoxyethylene(20) sorbitan monooleate(POE(20)SMO) and distearyl dimethyl ammonium chloride(D.D.A.C.) as the emulsifiers at microemulsion preparation. From the results, we could get best condition for microemulsion preparation, in case of oil phase, montanic ester wax ; 1.1wt%, paraffine wax ; 1.1wt%, liquid paraffine ; 3.1wt%, propylene glycol ; 0.6wt% and ethylene glycol monobutyl ether ; 0.6wt%, when the ratio(wt%) of D.D.A.C. and POE(20)SMO were 2 : 3. And also we could obtained that the distributed particle size of the final microemulsions were about 8±1.5nm and the mean particle size was 7±0.5nm. We got following results from final microemulsions that the percent of transmittance; 96~98% at 700nm. And the microemulsion blended with MEG of 5~15wt% showed smaller particle size and more stable distribution than non-containing MEG.
Some weight loss accelerating agents, dodecyltrimethylammonium chloride(DTAC), dodecyltrimethylammonium bromide(DTAB), dodecyldimethylammonium chloride(DDBAC), polyoxyethylene(2) dodecylbenzylammonium chloride(PDBAC), and 1-(2-hydroxyethyl)-1-benzyl-2-undecylimidazolinium chloride(AEUIC), were synthesized. As a result of weight loss treatment of the weight loss accelerating agents with NaOH to PET fiber, the increase of weight loss was the order of PDBAC > DDBAC > DTAC > DTAB > AEUIC. Among the weight loss accelerating agents, AEUIC hardly showed weight loss effect, and it was separated into two layer in the NaOH solution at the treatment concentration above 6g/L, but POBAC showed good weight loss effect of 21% that approach almost to a theoretical weight loss, 21.6%, at the concentration above 8g/L.
MDABM and MDAEW, as a accelerating weight loss agents, were prepared by adding water to myristyldimethylbenzylammonium bromide(MDAB) and myristyldimethylethylammonium ethyl sulfate (MDAE) synthesized. As a result of weight loss finishing of the MDABW and MDAEW with NaOH on PET fiber, the ratio of weight loss of MDABW was very larger than that of MDAEW. This result showed that quaternary ammonium bromide had higher weight loss effect than quaternary ammonium sulfate, and the ratio of weight loss was greatly varied with the kind of quaternary ammonium salts used. In these conditions, proper treatment concentration, treatment time, and treatment bath ratio were about 8g/l, 6O~90min, and 40:1~50:1, respectively.
감응물질로 제4급 암모늄염을 사용하여 PVC를 지지체로 과염소산이온의 농도 10-6M까지 측정가능한 이온 선택성 전극을 제작하였다. 감응물질의 화학적 구조와 함량, 가소제의 종류 및 막 두께에 따른 선형응답 범위와 Nernst의 기울기 등 전극특성을 검토하여, 최적 막조건을 구한 다음 측정가능 pH범위와 여러 방해이온에 대한 선택계수를 비교 검토하였다. 과염소산 이온선택성 전극에서 감응물질의 화학적 구조 즉, 알킬기의 탄소고리수가 증가할수록 선형응답 범위 등 전극 특성은 Aliquat 336P, TOAP, TDAP 및 TDDAP의 순서로 좋아졌다. 가소제는 DBP가 가장 좋았고, 감응물질의 양은 최적 함량 이상에서 적을수록 좋았다. 최적 막 조성은 TDDAP 9.09, PVC 30.3 및 DBP 60.61wt%이었고, 막두께 0.45mm이었다. 이 조건에서 선형응답 범위 10-1~1.2 × 10-6M, 검출한계 5.1×10-7M 및 Nernst기울기 57mV/pClO4이었다. 막전위는 pH 4~11 범위에서 pH의 영향을 받지 않았으며, 선택계수 서열은 다음과 같았다. SCN->I->NO3->Br->ClO3->F->Cl->SO42-
전 세계 각지에서 효율적인 이산화탄소 저감 기술 개발을 위한 연구가 활발히 진행되고 있다. 하지만 가장 상용화 가능성이 높다고 알려진 carbon capture and storage (CCS) 기술은 대한민국과 같이 적절한 저장소를 찾기가 어려운 국가에서는 상용화되기 어렵다는 단점을 가지고 있다. 따라서 최근 이러한 조건을 가진 국가에서는 CCS 기술을 대체하기 위하여 carbon capture and utilization (CCU) 기술의 개발에 대한 연구가 진행되고 있다. 본 연구에서는 흔히 알려진 폐기물인 레미콘회수수를 이용하여 CCU 기술 중 하나인 무기탄산화에 대해 다루었다. 무기탄산화란 금속 이온과 CO2를 반응시켜 금속 탄산염을 얻는 기술이다. 레미콘회수수는 다량의 Ca2+를 포함한 것으로 알려져 있어 이를 금속 이온 공급원으로 사용하여 고순도 탄산칼슘을 얻고자 하였다. 또한 이러한 탄산화 과정에서 암모늄염 첨가제의 영향을 알아보기 위하여 NH4SCN, NH4NO3, NH4Cl 세 가지 암모늄염을 선정하여 실험을 진행하였다. 탄산화 실험에서 여과한 레미콘회수수 상등액을 용매로 사용하여 30 wt% MEA, 3 wt% 암모늄염을 첨가한 용액 400 g과, 레미콘회수수 고체 100 g을 더하여 총 500 g의 흡수제를 만들어 사용하였다. 실험과정에서 CO2 흡수량을 알아보기 위하여 CO2 로딩 분석 및 그래프 도시를 진행하였고, 실험 결과 생성된 결과물을 x-ray diffraction (XRD), scanning electron microscopy (SEM) 그리고 thermogravimetric analysis (TGA) 분석을 통해 생성물의 구성 성분 및 순도를 알아보고자 하였다.
산업화가 가속화되면서 지구온난화는 환경을 위협하는 큰 문제로 대두되고 있다. 특히 지구온난화에 50% 이상 기여하는 물질인 이산화탄소는 그 농도가 산업혁명 이후 급격히 증가해왔으며, 이 문제를 해결하기 위해 전세계적으로 이산화탄소 저장기술(Carbon Capture and Storage, CCS)을 개발하는 연구가 활발하게 진행되고 있다. CCS 중 하나인 광물탄산화는 이산화탄소를 칼슘, 마그네슘 등과 반응시켜 불용성 탄산염으로 고정하는 기술이며, 원료로 칼슘이나 마그네슘을 다량 함유한 천연광물 또는 산업부산물이 사용될 수 있다. 제지슬러지소각재(Paper Sludge Ash, PSA)는 제지공정에서 생성되는 산업부산물로 칼슘을 다량 함유하고 있어 광물탄산화에 적합한 재료이다. 본 연구에서는 PSA를 암모늄염(ammonium chloride, ammonium acetate)과 반응시켜 칼슘을 선택적으로 용출한 후 탄산화하는 과정에서 암모니아수를 추가했을 때 탄산화 효율이 어떻게 변하는지를 알아보았다. 용제로 암모늄염 용액(0.3M, 1L)을 사용하여 PSA(20g)로부터 칼슘을 용출시킨 용출액 A와 용출액 A에 암모니아수(1.76mL)를 추가한 용출액 B를 각각 준비한 다음, 대기압 하에서 각 용출액에 이산화탄소(0.1L/min)를 30분 동안 주입하여 탄산화반응을 진행하였다. 용출액 A를 이용한 탄산화반응 결과 6.81g의 탄산칼슘을 회수하였고, 생성된 고체를 기준으로 산출한 이산화탄소 저장량은 149.8kg CO2/ton PSA이었다. 암모니아수를 추가한 용출액 B를 이용한 탄산화반응에서는 반응종료 후 용액 중 칼슘농도가 용출액 A 경우의 절반 정도이었다. 용출액 B로부터 7.69g의 탄산칼슘을 회수하였고, 이 결과는 이산화탄소를 169.2kg CO2/ton PSA 저장하였음을 의미한다. 칼슘 용출액 A에 암모니아수를 추가하면 완충작용이 지속되면서 높은 pH가 유지되기 때문에 용출액 B에서 탄산화 효율이 더 높아졌다. 또한 용출액 B에서처럼 암모니아수를 추가하면 한번 사용한 암모늄염 용제를 간접탄산화에 재사용할 때 칼슘 용출효율을 높이는데 기여하리라고 예상한다.