검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the adsorption removal characteristic for 10 species of perfluoroalkyl and polyfluoroalkyl substances (PFAS) was investigated using GAC and modified GAC (GAC-Cu). After modification with Cu(II), the amount of copper was to 1.93 and 4.73 mg/g for GAC and GAC-Cu, respectively. The total amount of 10 species of PFAS per specific area was obtained to 0.548 and 0.612 ng/m2 for GAC and GAC-Cu, respectively. A series of batch test confirmed lower efficiency was observed with a smaller number of carbon chain length and the removal efficiency of PFCA (perfluoroalkyl carboxylic acids) was lower than that of PFSA (perfluoroalkyl sulfonic acids) with the same carbon chain length. Regarding the pH effect, the adsorption capacity was decreased with increase of pH due to the increase of electrostatic repulsion. According to pseudo first and second order (PFO and PSO) kinetic models, while the values of equilibrium uptake and time did not show significant difference, a difference in uptake was observed between 24-48h. Furthermore, based on correlation analysis, Log Kow and uptake have a high correlation with molecular weight (M.W.) and initial concentration, respectively. These results show that long-chain PFAS have higher removal efficiency due to their increased hydrophobicity.
        4,000원
        2.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Perfluorooctanoic acid(PFOA) was one of widely used per- and poly substances(PFAS) in the industrial field and its concentration in the surface and groundwater was found with relatively high concentration compared to other PFAS. Since various processes have been introduced to remove the PFOA, adsorption using GAC is well known as a useful and effective process in water and wastewater treatment. Surface modification for GAC was carried out using Cu and Fe to enhance the adsorption capacity and four different adsorbents, such as GAC-Cu, GAC-Fe, GAC-Cu(OH)2, GAC-Fe(OH)3 were prepared and compared with GAC. According to SEM-EDS, the increase of Cu or Fe was confirmed after surface modification and higher weight was observed for Cu and Fe hydroxide(GAC-Cu(OH)2 and GAC-Fe(OH)3, respectively). BET analysis showed that the surface modification reduced specific surface area and total pore volumes. The highest removal efficiency(71.4%) was obtained in GAC-Cu which is improved by 17.9% whereas the use of Fe showed lower removal efficiency compared to GAC. PFOA removal was decreased with increase of solution pH indicating electrostatic interaction governs at low pH and its effect was decreased when the point of zero charges(pzc) was negatively increased with an increase of pH. The enhanced removal of PFOA was clearly observed in solution pH 7, confirming the Cu in the surface of GAC plays a role on the PFOA adsorption. The maximum uptake was calculated as 257 and 345 μg/g for GAC and GAC-Cu using Langmuir isotherm. 40% and 80% of removal were accomplished within 1 h and 48 h. According to R2, only the linear pseudo-second-order(pso) kinetic model showed 0.98 whereas the others obtained less than 0.870.
        4,000원
        4.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.
        4,200원
        5.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        실 산성 도금폐수를 입상활성탄(GAC)이 유동메디아로 첨가된 유동상 멤브레인 반응기를 이용하여 처리하였다. GAC 유동조건에서 적용 투과플럭스에 대해 시간에 따른 흡입압의 증가는 관찰되지 않았다. 폐수의 중성 pH에서 파울링 속도는 산성 조건에 비해 GAC 유동조건에서 크게 감소하였다. 해당 폐수의 용액 pH 증가는 입자크기의 증가를 가져왔고 이는 멤브레인 표면에서 상대적으로 성긴 구조의 케이크층 형성을 야기시켰다. 유동상 멤브레인 반응기에서 GAC 유동 하에 95% 이상의 COD 제거율이 관찰되었으며 총부유물질은 거의 완벽하게 제거되었다. 실 도금폐수의 pH에서, 유동상 멤브레인 반응기의 구리 및 크롬의 제거는 거의 관찰 되지 않았다. 그러나 pH를 중성으로 증가 시켰을 시 구리와 크롬의 제거율은 각각 99%와 94%까지 증가를 하였다. 적용해 준 pH에 상관 없이, 시안의 경우 95% 이상의 제거율을 달성하였다. 이는 유기물과 시안 착물 형성으로 인해 유동상 멤브레인 반응기 내 GAC의 강한 흡착으로 제거된 것으로 사료된다.
        4,000원
        6.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        고강도, 내약품성, 무독성, 내연소성의 장점을 가지고 있는 PVdF (polyvinylidene fluoride) 나노섬유로 기공이 0.4 μm 평막을 제조한 후, 부직포와 평막으로 나권형 모듈을 제작하였다. 용존유기물의 흡착 제거를 위한 입상 활성탄(GAC, granular activated carbon) 흡착 컬럼과 자체 제작한 나권형 모듈로 혼성 수처리 공정을 구성하였다. 카올린과 휴믹산으로 조 제한 모사 용액을 대상으로, 처리수를 재순환하는 경우와 배출하는 경우 각각 GAC 충진량의 영향을 알아보았다. 여과실험 후 물 역세를 하여 회복률과 여과저항을 계산하였다. 또한, 탁도와 UV254 흡광도를 측정하여 GAC의 흡착 효과를 고찰하였 다. 그 결과, 처리수를 재순환하는 경우와 배출하는 경우 모두 탁도 처리율에는 GAC 충진량의 영향이 없었다, 하지만 GAC 의 UV254 흡광도 처리율이 처리수를 순환하는 경우 0.7~3.6%이었는데, 처리수를 배출하는 경우 3.2-5.7%로 증가하였다. 처리 수를 순환하는 경우 GAC의 충진량이 증가함에 따라, 가역적 여과저항(Rr)과 비가역적 여과저항(Rir)은 감소하는 경향을 보였 다. 그러나 총여과저항(Rt)은 거의 일정하였고, 물 역세 회복률(Rb)은 다소 증가하는 경향을 보였다.
        4,000원
        7.
        2015.11 구독 인증기관·개인회원 무료
        기공 0.4 μm PVDF 나노섬유 정밀여과 나권형 모듈과 GAC 컬럼의 혼성공정에서 모사용액을 순환 없이 선형유속 0.013 m/s, TMP를 0.5 bar 조건으로 GAC 충진량을 변화시키면서 실험하였다. 또한 동일한 혼성공정에서 모사용액을 순환시키면서 선형유속 0.026 m/s, TMP 1.5 bar의 조건으로 GAC 충진량의 영향을 고찰하였다. 탁도와 UV254 흡광도(DOM) 처리율을 비교하였는데, 탁도 처리율에는 영향이 없었으나, GAC의 충진량이 많을수록 DOM 이 증가하였다. 하지만 TMP와 유속이 높은 조건인 순환이 있는 실험에서 GAC에 의한 DOM 처리율이 더 낮은 이유는 순환으로 인해 모사용액 농도가 낮아졌기 때문인 것으로 판단된다.
        8.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        강도가 강하고 내약품성, 무독성, 내연소성의 장점을 가지고 있는 PVdF (polyvinylidene fluoride) 나노섬유로 기공이 0.4 μm 평막을 제조한 후, 그 평막으로 부직포를 첨가하여 나권형 모듈을 제작하였다. 카올린과 휴믹산으로 조제한 모사용액과 순수를 대상으로 나권형 모듈의 투과선속과 처리율을 비교하여 pH의 영향을 알아보았고, 여과실험 후 물 역세척을 하여 회복률과 여과저항을 계산하였다. 또한, 나권형 모듈을 통과한 처리수를 입상 활성탄(GAC, granular activated carbon)으로 채워진 컬럼에 통과시킨 후, 탁도와 UV254 흡광도를 측정하여 GAC의 흡착 효과를 고찰하였다.
        4,000원
        10.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 고도정수처리를 위하여 모듈 내부와 세라믹 정밀여과막 외부 사이의 공간에 입상 활성탄(GAC)을 충전한 혼성 모듈을 이용하였으며, 정수 원수 중의 자연산 유기물(NOM)과 미세 무기 입자를 대체하기 위해, 휴믹산(humic acid)과 카올린(kaolin) 모사용액을 사용하였다. GAC의 충전율(packing fraction)에 따른 처리효율의 변화를 알아보고자. GAC의 충전율을 0~24.05%로 변화 시켰다. 그 결과, 3시간 운전하는 동안 막오염에 의한 저항(Rf) 및 투과선속(J)의 변화 곡선은 GAC의 충전율에 관계없이 거의 중첩되었다. 그리고 탁도의 처리효율은 모든 조건에서 99.46% 이상으로 높았으며, UV254 흡광도로 측정한 NOM의 처리효율은 최대 충전율 24.05%에서 제거율은 99.43%로 가장 높게 나타났다. 한편, 충전율 24.05%에서 13시간 동안 운전한 결과, J는 막오염의 증가에 따라 운전 초기 1시간 이내에 급격히 감소하였으며 3시간 운전 후부터는 거의 일정한 투과선속을 나타냈다. 그리고 탁도 및 NOM의 처리효율은 각각 99.52%와 96.63%로 안정적인 높은 처리효율을 보였다.
        4,000원
        12.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        This study carried out continuous column test for estimating the regeneration efficiency with regeneration times and temperatures. More times regenerated granular activated carbon (GAC) has more ash in the GAC and has less apparent density. Two times regenerated GAC (2nd re-GAC) could removed the Trihalomethanes (THMs) in the water for the first two week after starting continuous column test, on the other hand five times regenerated GAC (5th re-GAC) did not have adsorption capacity. The THMs concentration in the effluent was almost equal or higher than that of influent at the first time of continuous column test. 2nd re-GAC showed much more DOC adsorption capacity than 5th re-GAC and the GAC which was regenerated with 700 ℃ had highest DOC removal efficiency among the GACs with 600, 700, 800, 900 ℃ regeneration temperatures. It is anticipated the cost of GAC regeneration could be saved more 100 million won by reducing the furnace temperature of 3rd~4th and 5th~6th about 150 ℃ compared to the current regeneration condition.
        13.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        This research was performed by means of several different virgin granular activated carbons (GAC) made of each coal, coconut and wood, and the GACs were investigated for an adsorption performance of iodine-131 in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of the virgin two coals-, coconut- and wood-based GACs were observed as bed volume (BV) 7080, BV 5640, BV 5064 and BV 3192, respectively. The experimental results of adsorption capacity (X/M) for iodine-127 showed that two coal- based GACs were highest (208.6 and 139.1 μg/g), the coconut-based GAC was intermediate (86.5 μg/g) and the wood-based GAC was lowest (54.5 μg/g). The X/M of the coal-based GACs was 2∼4 times higher than the X/M of the coconut-based and wood-based GACs.
        16.
        2002.04 KCI 등재 서비스 종료(열람 제한)
        In this work, the characterization of adsorption of Cu, Zn and Cd on granular activated carbon in water has been studied. The factors that affect adsorption in boundary between activated carbon and wastewater are concentration, temperature, contact time, pH and so on. As the result of this study, the maximum adsorption amount of Cu occurred near pH 7, while that of Zn and Cd was near pH 9.6 and 10, respectively. As contact time and temperature are transformed, such factors as optimum contact time and temperature are taken into consideration in an adsorptive process of heavy metal because an adsorption and a reducing process occur. In isotherm of Freundlich, 1/n values of Cu, Cd capacity were between 0.16 and 0.5.
        17.
        1998.12 KCI 등재 서비스 종료(열람 제한)
        The adsorption experiment of phenol(Ph) from aqueous solution on granular activated carbon was studied in order to design the fixed-bed adsorption column. The experimental data were analyzed by unsteady-state, one-dimensional heterogeneous model. Finite element method(FEM) was applied to analyze the sensitivity of parameter and to predict the fixed-bed adsorption column performance on operation variable changes. The prediction model showed similar effect to mass transfer and intraparticle diffusion coefficient changes suggesting that both parameter present mass transfer rate limits for GAC-phenol system. The Freundlich constants had a greater effect than kinetic parameters for the performance of fixedbed adsorption column. FEM solution facilitated prediction of concentration history in solution and within adsorbent particle.
        18.
        1998.08 KCI 등재 서비스 종료(열람 제한)
        Aqueous phase adsorption of phenols by granular activated carbon was studied in a batch adsorption vessel. Adsorption isotherms of phenol(Ph), p-chlorophenol(PCP) and p-nitrophenol (PNP) from aqueous solution on granular activated carbon have been obtained. The experimental data were analyzed by the surface and pore diffusion models. Both models could be applied to predict the adsorption phenomena. However, the pore diffusion model was slightly better than the surface diffusion model in representing the experimental data for the initial concentration changes. Therefore, the pore diffusion model was used to predict the change of operating variables such as the agitation speed and particle size of adsorbent which have influence on the film resistance and intraparticle diffusion.
        19.
        1993.03 KCI 등재 서비스 종료(열람 제한)
        Adsorption process using granular activated carbon(GAC) has been considered as one of the most effective water treatment technologies to remove humic acid which is recognized as trihalomethane(THM) precursor in chlorination. To design the most effective GAC process, it is necessary to conduct the test of adsorption performance by means of isothem, batch rate and column studies and to select the most effective activated carbon according to raw materials of GAC-lignite and coconut shell. The objective of this study is to investigate the adsorption performance of humic acid on two activated carbons- lignite activated carbon(LAC) and coconut shell activated carbon(CAC) made in Korea. It is available to represent UV-abs and trihalomethane formation potential(THMFP) as concentration of humic acid due to good relationship. The adsorption capacity of humic acid is not concerned with surface area of activated carbon but with pore size related to about 100 A, and then LAC forming at the extent of mesopore is found to be eight times more effective in adsorption capacity than CAC forming at micropore. The adsorption capacity of LAC and CAC is better at pH 5.5 than at pH 7. Pore and surface diffusion coefficients calculated from the diffusion model are 7.61×10 exp (13)㎡/sec, 3.52×10 exp(-15) ㎡/sec for CAC, and 3.38×10 exp (-12)㎡/sec and Ds=1.48×10 exp (-15)㎡/sec for GAC respectively. From the results of column test it shows that the performance of LAC is also better than CAC and the optimal EBCT(Empty Bed Contact Time) is 4.52min. and activated carbon removes selectively the components of humic acid to be easily formed to THM.