검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 60

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, In this study, structural analysis of a fuel tank for an SUV (sports utility vehicle) was performed for crack prevention design. Reservoir tank analysis was conducted for crack prevention design, and improvement measures for weak areas were discovered and reflected in the design. Pressure analysis was performed on the existing model to analyze weak areas. As a result of analysis through various design changes, it was found that the strength problem of the reservoir tank was due to the discontinuity of the rib inside the tank, and to improve this, it was necessary to minimize the discontinuity section.
        4,000원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The sub-frame is located on the lower body of a monocoque type vehicle and serves as an engine and suspension, and is an important object part that receives a lot of load. The existing press-type sub-frame has a large number of parts for assembling, which causes an increase in cost. Changing the machining form of this part from the existing press-type machining method to the hydro-forming machining method has the advantage of reducing the cost and weight at the same time due to the reduction of the process. Therefore, in this study, the purpose of this study is to change the design so that the sub-frame of the existing press type can be changed to the hydro-forming process method. To this end, we intend to present a design method by analyzing the effect on the rigidity of the sub-frame using the existing machining method through shape optimization analysis.
        4,000원
        3.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, stiffness evaluation was conducted on the main member, front cross member, and rear cross member, which are three components of sub-frame for SUVs (sports utility vehicles), through mode analysis. As for the design variables used in the analysis, the maximum frequency was examined by varying the width and height of each of the three parts into four types. Of course, the weight at this time is minimized, and the mode is set as a constraint that only bending occurs and no distortion occurs. As a result of the analysis, the member affecting the 1st mode was the rear cross member, and the member having the greatest influence on the 2nd mode was the front cross member. In addition, the member with the greatest influence on the 3rd mode appeared as the rear cross member, indicating that this part had the greatest effect on the bending stiffness.
        4,000원
        4.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the design of the lower arm, a type of suspension for a 4 wheel drive vehicle, was dealt with through structural analysis. In the case of the existing lower arm, cracks occurred in the neck, so it is necessary to reduce the maximum stress in order to extend the life of the analysis model. Based on this, various design changes were made, and the maximum stress generated was compared through structural analysis of each design change model. For structural analysis, a unit load (1N) was applied in the vertical direction to the lower arm model, and the results were analyzed relative to each other. As a result of analysis through various design changes, case 3, a model in which the stress concentration applied to the lower arm was relieved, showed an increase in strength of about 51% compared to the existing model.
        4,000원
        5.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자율주행 5단계(mind-off)에서는 운전에서 해방된 탑승자가 차량 내에서 대면 대화, 업무, 휴식, 영화 감상 등의 다양한 활동이 될 것으로 예상된다. 특히 자동차 실내 공간의 다양한 변화가 예상된다. 또한 미국자동차협회(American Automobile Association)가 시행한 조사에서 73%가 자율주행 자동차에 탑승하는 것이 두렵다고 응답하였고, 자율주행 5단계에서는 안전의 주체가 자율주행자동차로 이양이 예상되므로 사용자 경험 관점에서 연구가 이루어져야 한다. 최근 완전자율주행자동차의 안전성 확보에 관한 다양한 연구가 이뤄지고 있으나 실제 탑승자의 심리적 안전성 확보 관점에서의 연구는 부족한 실정이다. 이에 본 연구는 AHP 분석 기법에 기반하여 설문조사를 진행하였다. 그 결과 각 실내 행위 유형에 따라 탑승자의 심리적 안전성 확보를 위한 자동차 안전장치의 우선순위를 도출하였고 도출된 결과를 기반으로 탑승자의 심리적 안전성을 확보를 위한 실내 공간을 제시하였다. 본 연구는 탑승자의 심리적 안전성을 충족하는 실내공간 설계를 위한 방향성을 제시한 것에 의의가 있으며, 이를 바탕으로 사용자의 심리적 안전성 확보를 위한 완전 자율주행 자동차 실내 환경 조성이 이루어질 것으로 기대한다.
        4,300원
        6.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to provide the priority of the front-loading factors in the design stage of the automotive parts development process in order to efficiently and effectively respond to the demands of the car maker (customer). Front-loading is defined as a strategy in order to improve development performance by shifting the identification and solving of design problems to earlier phases of a product development process. Two approaches of the front-loading are project-to-project knowledge transfer and rapid problem solving. For the study, a survey was conducted on the R&D department in the automobile parts company and analyzed by AHP (Analytic Hierarchy Process) method. The result of the survey shows the cost savings is the highest weight in terms of front-loading effect and in terms of front-loading factors, it gives priorities as “the problems of past project” first, “Design Review” second, “CAE (Computer Aided Engineering)” third, “FMEA (Failure Mode and Effects Analysis)” fourth, “benchmarking” and SR (Sourcing of Requirements). The results of the study will be helpful to provide practical value for improving product design of component development.
        4,000원
        8.
        2019.05 구독 인증기관 무료, 개인회원 유료
        A steering knuckle for a car is a key part of a corner module and is a functional part connected to steering, suspension, and braking devices. Steering knuckles are used for various types of forging and machining methods such as casting forging, aluminum forging, etc. to perform productivity and quality. Therefore, in this study, we study about the development of the overall design of the steering knuckle in the production and supply of the steering knuckle for the product processing method, quality, assembly inspection, etc. through the modeling and analysis of the steering knuckle.
        4,000원
        9.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE).. Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.
        4,000원
        10.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the power steering systems used for automobiles, because of its small size and low noise, a balanced type hydraulic vane pump is mainly used as a power source. Therefore it is requested to research on the lubrication characteristics of a oil hydraulic vane pump which is the key part to improve its performance. The performance of a oil hydraulic vane pump is influenced by the lubrication characteristics of the critical sliding components. Thus, lubrication characteristics between the shaft and the journal bearing have to be researched for the design and the performance improvement of a oil hydraulic vane pump. Therefore, in this paper, it is theoretically investigated that the lubrication characteristics between the shaft and the journal bearing of a balanced type oil hydraulic vane pump for power steering systems. The results demonstrate that lubrication characteristics are significantly influenced by the clearance between the shaft and the journal bearing.
        4,000원
        11.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A study on the weight reduction of a motor shaft in electric vehicle by using optimum design technique was carried out. The structural analysis of a motor shaft was performed by using ANSYS to investigate the structural safety. We also used HEEDS to find the optimal hollow shaft thickness. When the material of the hollow shaft is changed to SCM822H by using ANSYS 14.5 and HEEDS MDO, the weight could be reduced by about 53 % compared to the conventional solid one. From this study, the optimized dimensions of a hollow shaft were determined for light weight design.
        4,000원
        13.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hydro-forming design process of the sub-frame side members was studied using a high strength steel of 440 MPa in tensile strength. In the part design stage of the side member, the cross section analysis and the overall process design of the part shape were done. In the detailed simulation results, the maximum thickness reduction rate due to hydro-forming was predicted to be 13% and this was predicted to be a safe level without cracking. The end curvature was reduced to increase the stiffness of the part to design more secure parts and two types of grooves were added to the cross section and compared. The thickness reduction rates of the narrow and wide were improved by 18.6% and 15.6%, respectively when the narrow and wide grooves were added.
        4,000원
        15.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of sub-frame parts development by tube hydro-forming using steel material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (computer aided design) to confirm hydro-formability in details. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. All the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.
        4,800원
        17.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A most important progress in civilization was the introduction of mass production. One of main methods for mass production is die-casting molds. Due to the high velocity of the liquid metal, aluminum die-casting is so complex where flow momentum is critical matter in the mold filling process. Actually in complex parts, it is almost impossible to calculate the exact mold filling performance with using experimental knowledge. To manufacture the lightweight automobile bodies, aluminum die-castings play a definitive role in the automotive part industry. Due to this condition in the design procedure, the simulation is becoming more important. Simulation can make a casting system optimal and also elevate the casting quality with less experiment. The most advantage of using simulation programs is the time and cost saving of the casting layout design. For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_BR2E, Computer Aided Engineering (CAE) simulation was performed with three layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with three models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflows. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.
        4,000원
        18.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we changed the existing S45C steel shafts applied to the drive shaft for power train of automotive to Al7003-T6 aluminum material. For this purpose, the optimal inner diameter of the aluminium shaft is established. And, analysis of the stresses and vibration characteristics of shafts were analyzed through finite element analysis. The final aluminum drive shaft was evaluated through the static torsional torque test and the frequency test. The Al7003-T6 aluminum drive shaft's weight is 67% comparing from 100% of shaft with existing steel, and with the performance of 3,276 N-m and 236 Hz, it satisfies requirements of the torsional torque of 3,000 N-m and vibration characteristic over 150 Hz required for drive shaft.
        4,000원
        19.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The driving efficiency in vehicles depends on a weight lightening of wheels. Lightweight aluminum wheel research has been widespread over the years. Carbon wheels reduce weight by 50% compared to aluminum wheels and have high tensile strength and low heat absorption. This study was investigated to apply the carbon fiber of molding pressure to produce the carbon wheel. Carbon wheel of mold structure analysis was performed.
        4,000원
        20.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The vehicle weight and alternative light materials development like aluminum alloys are hot issues around the world. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger suspension links have been studies without sacrificing the safety of automotive components. Therefore, in present study, the structure analysis of the torque strut links made by aluminum alloys (A356) was performed by using CAE (computer aided engineering) to investigate the light weight design process from the reference of the rear suspension torque strut link which was made by STKM11A steel and was already proven in the commercial market. Especially, the simulated maximum von Mises stresses after strength analysis were normalized as fatigue limit and these were converted to the WF (weight factor) of the same type as the fatigue safety factor suggested and named like that in present study. From these, it was suggested that the fatigue properties of the torque strut could be simply predicted only from this static CAE simulation.
        4,000원
        1 2 3