교통안전시설물의 관리는 도로교통의 안전과 직결되는 문제이다. 운전자는 신호등, 표지판, 노면표시 등을 통해 운전에 필요한 정보 를 얻는다. 노후된 표지판과 노면표시는 운전자에게 잘못된 정보를 제공할 수 있으므로 주기적인 시설물의 관리가 필요하다. 본 연구 는 딥 러닝 기술을 활용해 운전자 시각의 영상 자료에서 교통안전표지를 자동으로 탐지하고자 하며, 교통안전표지의 공통된 색상 특 징을 기반으로 클래스를 그룹으로 묶어 데이터셋을 구축하는 방법을 제안한다. 객체탐지의 성능지표로 널리 활용되는 mAP를 사용해 클래스 묶음 여부에 따른 탐지 성능을 비교한 결과, 색상 기반 클래스 묶음을 적용한 모델의 탐지 성능이 비교군에 비해 약 36% 상승 함을 확인하였다.
PURPOSES : This study uses deep learning image classification models and vehicle-mounted cameras to detect types of pavement distress — such as potholes, spalling, punch-outs, and patching damage — which require urgent maintenance.
METHODS : For the automatic detection of pavement distress, the optimal mount location on a vehicle for a regular action camera was first determined. Using the orthogonal projection of obliquely captured surface images, morphological operations, and multi-blob image processing, candidate distressed pavement images were extracted from road surface images of a 16,036 km in-lane distance. Next, the distressed pavement images classified by experts were trained and tested for evaluation by three deep learning convolutional neural network (CNN) models: GoogLeNet, AlexNet, and VGGNet. The CNN models were image classification tools used to identify and extract the combined features of the target images via deep layers. Here, a data augmentation technique was applied to produce big distress data for training. Third, the dimensions of the detected distressed pavement patches were computed to estimate the quantity of repair materials needed.
RESULTS : It was found that installing cameras 1.8 m above the ground on the exterior rear of the vehicle could provide clear pavement surface images with a resolution of 1 cm per pixel. The sensitivity analysis results of the trained GoogLeNet, AlexNet, and VGGNet models were 93 %, 86 %, and 72 %, respectively, compared to 62.7 % for the dimensional computation. Following readjustment of the image categories in the GoogLeNet model, distress detection sensitivity increased to 94.6 %.
CONCLUSIONS : These findings support urgent maintenance by sending the detected distressed pavement images with the dimensions of the distressed patches and GPS coordinates to local maintenance offices in real-time.
콘크리트 구조물 표면에 발생하는 균열은 사용자에게 심리적인 불안감을 제공하며, 장기간 열려있는 큰 폭의 균열은 구조 물의 사용성능 및 내구성에 영향을 준다. 국내에서는 건축물을 포함한 시설물의 노후화에 따른 안전관리를 위해 균열정도를 파악하는 조사가 인력에 의한 육안조사로 수행되고 있지만 인력의 고비용성과 객관성 미흡 등의 문제점이 대두되고 있다. 이를 해결하기 위해 영상분석을 통한 균열 추출 등 다양한 연구가 수행되고 있으나 균열인식 정확도 향상에 2차원 영상 분석만으로는 한계가 있다. 따라서, 본 연구에서는 기존 2차원 영상 분석의 한계를 극복하기 위하여 3차원 특성을 정확하게 파악할 수 있는 3차원 광삼각 스캐닝기법을 활용하여 콘크리트 구조물 표면의 균열정보를 획득하는 기법을 개발하였다. 본 하 드웨어의 개발과 더불어 균열 패턴분석을 위한 획득된 균열의 세분화와 균열의 특성분석 알고리즘을 개발하였으며, 이를 실제 콘크리트 빔의 균열 탐지 적용을 통해 검증하였다.
The research on improvement of false alarm from the automatic fire detection system has been continually achieved in the meantime. But the research for the code-transmitter as one of component devices of the automatic fire detection system. In order to improve difficulty of the code-transmitter check-up, introduction for the address type-code-transmitter and the automatic recovery system for check up of the code-transmitter was proposed. In order to prevent against occurrence of noise and signal attenuation, introduction of the optical fiber cables that noise and signal attenuation do not occur and introduction for an optical communication relay that can apply to was proposed respectively.
The goals of automatic fire detection equipment in Japan and South Korea are the detection in early fire stage, alarm and finding the location of the fire. Japan also has similar operation system and signal transmission method compared with South Korea. The standards of fire detection equipment in Japan are established their own standards. The automatic fire detection equipment in Korea has been developed with benchmarking the Japanese system in early 1950’s and follows the decree on the basis of Japan’s fire services. NFPA 72, which is automatic fire detection equipment in U.S.A. and verified through the experiment and test, expects to reflect to our automatic fire detection equipment after modification and supplement.
The automatic fire detection system is an important facility installed with focusing on minimizing the damage from a fire. This paper presents in the followings as the methods to reduce the false alarm of the automatic fire detection system; first, to prepare for legal standard so that revised legal standard can be applied to the fire fighting property prior to revision; second, to introduce the performance based fire detection protection design in the law based fire protection design; third, to maintain the wiring of worn-out detector; forth, to introduce an evaluation system to the education for the fire warden; fifth, to extend the standard of MTBF(meantime between failure) of the detector; sixth, to extend of installing the analog type detector; seventh, to improve the structure of reset switch.
딥러닝 모델은 주어진 학습용 데이터에서 탐지하고자 하는 물체의 특징을 추출하기 때문에, 딥러닝 모델 학습을 위한 학습용 데이터 구축은 매우 중요하다. 본 연구에서는 균열을 탐지하는 딥러닝 모델의 성능을 향상시키기 위해, 실제 콘크리트 구조물이나 아스팔트 도로 표면에서 자주 발견될 수 있는 나뭇가지, 거미줄, 전선 등을 학습 데이터에 자동으로 포함시키고, negative 영역으로 분류하는 알고리즘을 개발하였다. 제안된 알고리즘을 사용하여 학습된 딥러닝 모델을 실제 도로 표면에 발생한 균열 탐지에 적용하여 실제 균열 탐지에 사용될 수 있음을 보였다.
Pavement condition deteriorates due to various environmental issues. This can be seen on the pavement surface as a form of distress. A crack can be considered as a typical form of pavement distress in which it may reveal a critical condition of the road. Therefore, automatic and accurate detection of pavement crack and segmentation are crucial for pavement condition assessment and maintenance.