In the manufacturing of bulk graphite, pores produced by vaporization and discharge of volatile materials in binders during carbonization reduce the density of bulk graphite, which adversely affects the electrical conductivity, strength and mechanical properties. Therefore, an impregnation process is introduced to fill the pores and increase the density of bulk graphite. In this study, bulk graphite is prepared by varying the viscosity of the impregnant. The microstructure of bulk graphite is observed. The flexural strength and electrical resistivity are measured. As the viscosity of the impregnants decreases and the number of impregnations increases, it is shown that the number of pores decreases. The density before impregnation is 1.62 g/cm3. The density increases to 1.67 g/cm3 and porosity decreases by 18.6 % after three impregnations using 5.1 cP impregnant, resulting in the best pore-filling effect. After three times of impregnation with a viscosity of 5.1 cP, the flexural strength increases by 55.2 % and the electrical resistivity decreases by 86.76 %. This shows that a slight increase in density due to the pore-filling effect improves the properties of bulk graphite.
Conductive polymer composites with high electrical and mechanical properties are in demand for bipolar plates of phosphoric acid fuel cells (PAFC). In this study, composites based on natural graphite/fluorinated ethylene propylene (FEP) and different ratios of carbon black are mixed and hot formed into bars. The overall content of natural graphite is replaced by carbon black (0.2 wt% to 3.0 wt%). It is found that the addition of carbon black reduces electrical resistivity and density. The density of composite materials added with carbon black 3.0 wt% is 2.168 g/cm3, which is 0.017 g/cm3 less than that of non-additive composites. In-plane electrical resistivity is 7.68 μΩm and through-plane electrical resistivity is 27.66 μΩm. Compared with non-additive composites, in-plane electrical resistivity decreases by 95.7 % and through-plane decreases by 95.9 %. Also, the bending strength is about 30 % improved when carbon black is added at 2.0 wt% compared to non-additive cases. The decrease of electrical resistivity of composites is estimated to stem from the carbon black, which is a conductive material located between melted FEP and acts a path for electrons; the increasing mechanical properties are estimated to result from carbon black filling up pores in the composites.
백두산에서는 밀레니엄 대분화 이후로도 수차례의 화산활동이 계속되어 마그마 거동 감시 연구의 필요성이 지속적으로 제기되고 있다. 마그마방의 깊이 및 규모를 파악하기 위해서는 다양한 지구물리학적 접근이 필요하며, 본 연구에서는 전기비저항 탐사의 적용성을 검토하고자 한다. 국경으로 인해 공간적 제한이 있는 백두산에서 심부에 위치한 마그마를 탐사하기 위해서는 측선의 길이가 수십 킬로미터 이상이 되는 대규모 전기탐사가 이루어져야 하며, 이를 위해 서는 분산계측 시스템의 도입과 이에 최적화된 탐사 설계가 필수적으로 요구된다. 따라서 자체 개발된 분산계측 시스템을 활용하는 탐사설계안을 제시하고 전산실험을 통해 적용 가능성을 분석하였다. 단일 측선과 비동일선상 송신원 배열을 사용한 탐사설계안을 이용하여 다수의 측선 설치가 필요한 일반적인 3차원 탐사에 준하는 역산 해석 결과를 얻을 수 있음을 확인하였으며, 이 탐사설계안이 백두산 심부 물리탐사에 유용하게 적용될 수 있을 것으로 기대된다.
Underground cavities are frequently taking place in urban areas due to soil loss caused by structural defects of underground buried pipes. In this study, a field experimental program was conducted to detect ground condition using the electrical resistivity survey and the pneumatic cone penetration test. In addition, we proposed a method to estimate the weighted mean resistivity value by quantifying the electrical resistivity measurements through image analysis in order to compare the results of pneumatic cone penetration test. Consequently, it was found that as the weighted average resistivity value decreased, the smaller the N-value (penetration depth per blow number) from the pneumatic cone penetration test results. Based on the limited number of field experimental measurements, the correlation between weighted average resistivity value and the N-value of pneumatic cone penetration test is deemed promising in assessment of ground conditions associated with developing underground cavitation.
A composite material was prepared for the bipolar plates of phosphoric acid fuel cells(PAFC) by hot pressing a flake type natural graphite powder as a filler material and a fluorine resin as a binder. Average particle sizes of the powders were 610.3, 401.6, 99.5, and 37.7 μm. The density of the composite increased from 2.25 to 2.72 g/cm3 as the graphite size increased from 37.7 to 610.3 μm. The anisotropy ratio of the composite increased from 1.8 to 490.9 as the graphite size increased. The flexural strength of the composite decreased from 15.60 to 8.94MPa as the graphite size increased. The porosity and the resistivity of the composite showed the same tendencies, and decreased as the graphite size increased. The lowest resistivity and porosity of the composite were 1.99 × 10−3 Ωcm and 2.02 %, respectively, when the graphite size was 401.6 μm. The flexural strength of the composite was 10.3MPa when the graphite size was 401.6 μm. The lowest resistance to electron mobility was well correlated with the composite with lowest porosity. It was possible the flaky large graphite particles survive after the hot pressing process.
PURPOSES : The pole electrode method damaged the concrete pavement on inserting the electrode into the pavement surface. This study examined the feasibility of the flat electrode method to observe the concrete pavement instead of the pole electrode method and analyzed the resistivity characteristics of the concrete by performing laboratory tests.
METHODS : The resistivity of the concrete specimens manufactured with three different mixing ratios (38.50%, 39.50%, and 40.50%) were measured using the pole and flat electrode methods according to the concrete age (7 and 28 days) and electrode spacing (20 mm, 30 mm, and 40 mm).
RESULTS : In both pole and flat electrode methods, the resistivity increased with increasing fine aggregate proportion regardless of the concrete age. The resistivity measured at a concrete age of 28 days was slightly larger than that measured at 7 days. In the case of a concrete age of 7 days, the resistivity measured by the flat electrode method was larger than that measured by the pole electrode method. The difference disappeared at 28 days.
CONCLUSIONS: The results suggest that the flat electrode method can replace the pole electrode method because the resistivity measured by both methods was similar. Hence, the development of a technology to apply the flat electrode method to actual concrete pavement is necessary.
최근 도심지에서 지중매설관의 구조적 결함에 의한 토사 유실로 인해 지하 공동이 빈번하게 발생하고 있다. 본 연구에서는 이러한 지하 공동을 파악하는데 있어 현장 실험 수행 결과 전기비저항 탐사와 공압콘관입시험이 지반 조건의 이상 징후를 탐지하는데 효율적임을 확인하였다. 또한, 이미지 분석을 통한 전기비저항 실험 측정값을 정량화 하여 평균 비저항 값을 산정하는 방법을 제안하였다. 실대형 실험 결과, 평균 비저항 값이 감소할수록 위험도가 증가하였고, 공압콘관입시험 결과, N치가 작을수록 위험도가 높다는 것을 확인하였으며, 제한적인 측정 데이터 수를 토대로 평균 비저항 값과 공압콘관입시험의 결과를 토대로 상관관계를 나타내었을 때, 지반의 지하공동 발생과 관련된 위험 수준을 제한적으로 평가할 수 있을 것으로 판단된다.
일반적으로 도로포장 하부층의 다짐상태는 시간이 경과함에 따라 배수불량, 관로의 노후화 등으로 인 하여 품질이 저하되어 지지력이 약해지거나 공동(Cavity)이 발생하게 된다. 이러한 공동으로 인해 지반 사이에 이격이 발생하여 설계 당시의 하중보다 더 큰 하중이 가해지게 되며 이로 인해 포장에 침하 및 균 열이 발생하게 된다. 이를 방지하기 위해서는 포장 하부층의 상태를 사전에 파악하고 조치를 취해야한다. 하부층의 상태파악을 위해서는 코어링(Coring)을 통해 직접 육안으로 확인하는 것이 가장 확실한 방법이 다. 하지만, 포장체에 파손을 발생시키고, 천공 중 교란이 발생할 수 있으며 깊은 곳에 존재하는 공동까지 천공이 불가능하다는 단점이 있다. 이러한 단점을 보완하기 위해서는 다양한 비파괴 검사를 통한 포장 하 부층의 상태조사가 필요하다. 그 중 전기비저항 탐사(Electrical Resistivity Survey)는 전자기기 및 컴퓨 터 발달에 힘입어 짧은 시간에 많은 양의 데이터를 획득할 수 있을 뿐 아니라 해석 결과의 신뢰성도 높아 져서 현재 국내에서 많이 이용되고 있는 방법 중 하나이다. 일반적으로 전기비저항 탐사는 전극봉(Pole) 을 지면에 설치하여 탐사를 진행하는데 포장표면에서는 전극봉 설치가 용이하지 않으며 설치과정에서 파 손을 발생시킬 수 있다.
본 연구의 목적은 평판접지전극방법(Flat Electrode Method)과 전극봉전극방법(Pole Electrode Method)의 비교를 통해 각 포장층별 재료들의 전기비저항 특성(Resistivity Characteristic)을 분석하고 평판접지전극방법을 이용한 전기비저항 탐사를 포장 하부 공동탐사에 적용할 수 있는지에 대한 여부를 파 악하는 것이다. 포장층별 재료들의 공시체를 이용한 실내실험(Laboratory Test)을 통해 전기비저항 특성 을 분석하고, 공동 및 포장을 모사한 현장실험(Field Test)을 통해 평판접지전극방법을 이용한 전기비저 항 탐사의 적용 가능성을 파악한다.
최근 국내외 많은 지역에서 발생하는 싱크홀은 그 발생의 규모와 시기를 예측하기가 어렵다. 현재의 기 술로는 싱크홀이 발생할 가능성이 있는 위험지역에 Coring을 이용하여 도로하부 공동의 유무를 파악하는 방법이 최선이다. 하지만 포장된 도로에 Coring을 실시하면 그 후 보수하더라도 보수한 부분이 취약해져 추가 파손이 발생하기 쉽다. 따라서 도로하부에 존재 가능한 싱크홀을 찾기 위해 무작위로 Coring을 실시 하는 것은 상당히 비효율적인 방법이다. 이러한 단점을 보완하기 위해 도로포장면의 파손 없이 도로하부 에 싱크홀이나 공동 혹은 이상대의 유무를 파악하기 위해 전기비저항 탐사(Resistivity Survey)방법을 이 용하였다. 하지만 현재 실시되고 있는 전기비저항 탐사는 지면과 접촉하는 전극부가 말뚝형태를 하고 있 어 도로 천공이 불가피하다.
본 연구의 목적은 기존의 전기비저항 탐사의 단점을 보완하여 도로의 파손 없이 하부에 존재하는 싱크 홀 등을 파악하는 것이다. 전기비저항 탐사의 전극부를 기존의 천공방법에서 접지방법으로 변형하여 전기 비저항 탐사를 실시할 수 있음을 파악하고 싱크홀과 지반연화를 모사한 실내실험을 통해 접지전극방식의 전기비저항 탐사기법을 검증한다.
To fabricate porous SiC-Si composites for heating element applications, both SiC powders and Si powders were mixed and sintered together. The properties of the sintered SiC-Si body were investigated as a function of SiC particle size and/or Si particle contents from 10 wt% to 40 wt%, respectively. Porous SiC-Si composites were fabricated by Si bonded reaction at a sintering temperature of 1650 oC for 80 min. The microstructure and phase analysis of SiC-Si composites that depend on Si particle contents were characterized using scanning electron microscope and X-ray diffraction. The electrical resistivity of SiC-Si composites was also evaluated using a 4-point probe resistivity method. The electrical resistivity of the sintered SiC-Si body sharply decreased as the amount of Si addition increased. We found that the electrical resistivity of porous SiC-Si composites is closely related to the amount of Si added and at least 20 wt% Si are needed in order to apply the SiCSi composites to the heating element.
전기비저항탐사는 제방 등의 수리시설물 안전 관리를 위해 널리 사용되는 방법이다. 본 연구에서는 서해안에 위치한 제방에서 해수측 조석 변화가 전기비저항 모니터링 자료의 해석에 어떤 영향을 미치는지 분석하고자 하였다. 이러한 연구를 위해 조석 변화가 많이 발생하는 제방에서 3일 동안 3시간 간격으로 전기비저항 변화를 모니터링 하였다. 전기비저항 모니터링 자료는 시간에 따라 특정 구간에서 비저항 분포 변화를 나타냈으며, 이러한 결과는 조석 변화와 상관성이 있는 것으로 파악하였다. 따라서 조석 변화가 큰 제방에서의 전기비저항 탐사는 이에 따른 고려를 필히 해줘야 한다. 향후 연구를 위해 보다 장기간에 걸친 전기비저항 모니터링 및 조석 변화의 분석이 필요할 것으로 사료된다.
연약지반의 평가를 위한 물리탐사기법의 적용성을 알아보기 위해 총 6개월간의 전기비저항 모니터링자료를 취득하였다. 추가적으로 다중채널 표면파 탐사(Multichannel Analysis Surface Wave; MASW)를 실시하여 전단파 속도와 연약지반의 강도분포를 파악하고자 하였다. 또한, 콘 관입시험(Cone Penetration Test; CPT)과 시추 시료의 실내시험을 이용하여 물리탐사 자료와의 상관성을 확인하고 탐사 자료의 신뢰성을 높이고자 하였다. 그 결과 장기간의 모니터링 자료로부터 연약지반의 거동양상을 파악할 수 있었고, 추가 탐사를 통해 얻은 전단파 속도와 실내 시험간의 유의미한 상관관계가 확인되어 연구 지역 연약지반의 강도를 평가하는데 있어 표면파 탐사의 유용성을 확인 할 수 있었다. 최종적으로 지구통계학적 방법을 이용하여 물리탐사 자료와 이종 자료에 대한 3차원적인 지반 분포 영상을 획득하였다. 본 연구를 통해 넓은 영역에서의 연약지반 평가를 위해서는 장기간의 전기비저항 모니터링으로 영역 전체의 특성을 파악해야 함을 알 수 있었다. 이를 보강할 수 있는 추가적인 탐사 자료와 시추 자료를 이용한다면 경제적이고, 신뢰성 있는 평가가 이루어 질 수 있을 것으로 판단된다.
콘크리트 도로 하부의 이상대를 찾기 위해 전기비저항 탐사를 수행하였다. 콘크리트의 접지저항효과를 줄이기 위해 전기전도성이 좋은 매질과 평판 전극을 이용하였다. 전기비저항 탐사 결과를 분석하고 같은 장소에서 수행한 지하투과레이더 탐사, 충격응답기법, 다중채널 표면파 탐사 결과와 비교하였다. 전기비저항 탐사 결과는 함몰과 포장 구간에서 높은 비저항 분포를 보였으며, 지하투과레이더 탐사 결과는 보강으로 인한 형태를 보였다. 또한 충격응답기법과 전기비저항 탐사 결과의 비교를 통하여 보강 구간에서의 높은 동적강성도가 높은 비저항 분포의 원인임을 확인하였다. 동일한 장소에서 수행한 전기비저항 탐사와 다중채널 표면파 탐사 결과를 공동 크리깅한 결과, 지구통계학적 복합 해석이 각 지구물리 탐사결과에 대한 개별적인 분석보다 더 명확하게 이상대를 확인 할 수 있었다. 이 연구는 지구물리 탐사에 기초한 의사결정 과정에서 지구통계학을 이용한 복합 해석 결과의 활용 가능성을 제시한다.
지하 폐광도에 의한 지반침하 지역에서 전기비저항탐사와 시추공영상촬영을 통하여 지하공동의 분포 파악 및 지반 침하의 시간에 따른 변화량 측정을 수행하였다. 전기비저항탐사가 가능했던 연구지역 1에서는 100-150 ohm-meter 정도 낮은 비저항을 가지는 이상대가 관찰되었으며 시추조사와 시추공영상촬영 결과에서 폐갱도를 확인하였다. 연구지역 2는 도로로 피복되어 전기비저항탐사 수행이 불가능하였으나 광맥분포를 고려한 시추조사에서 채굴적 및 폐갱도를 확인하였다. 또한 시추공영상촬영을 43일간 총 6차례에 걸쳐 수행하여 시간에 따른 지하매질의 수직 이동 변위를 측정하였다. 지반침하로 인한 지하매질의 수직이동양상은 하부에서 상부보다 3배 이상 큰 규모로 발생하며 그 지속기간 역시 4배 이상 오랫동안 발생했음을 확인하였다. 효과적인 지하공동 탐지 및 지반침하 작용 모니터링을 위해서는 전기비저항탐사와 시추공영상촬영기법을 활용하는 것이 유용함을 알 수 있었다.
석회암 공동이 발달한 도심지역에서 지하수위 하강에 수반되어 발생한 함몰형 지반침하의 원인 규명 및 공동의 분포 특성 파악을 위하여 시추공을 이용한 전기비저항 토모그래피탐사를 실시하였다. 이때 지하수 수리지질 특성을 파악하기 위하여 시추코아의 비저항 측정, 지하수위 측정 및 수리전도도 해석을 병행하였다. 연구 지역에서의 완만한 지하수위 분포 특성과 0.8-9.3×10-4 cm/s 범위의 수리전도도 분포로 부터 연구지역의 수리지질 특성은 불균질성이 크지 않은 것으로 나타났다. 시추코아를 이용한 전기비저항 측정 결과 연구지역의 석회암은 파쇄가 많은 경우, 변질이 심한 경우 및 신선한 경우로 나눠지며, 전기비저항은 각각 103-161, 218-277 및 597-662 ohm-m의 범위로 나타났다. 시추결과 점토로 충전된 석회암 공동 지점은 토모그래피 탐사자료의 역산 결과 50 ohm-m 이하의 낮은 비저항으로 나타났으며, 각 시추공 간 비저항 영상 단면으로부터 연구지역 전체적으로 지표 하부 심도 약 10-20 m 구간까지 파쇄대 또는 석회암 공동 구간이 분포하는 것으로 나타났다. 또한 석회암 공동의 직경은 약 4-6 m 규모로, 대부분 점토질로 충전된 것으로 판단된다.
최근 들어 국내 광산개발에 대한 관심이 고조되면서 새로운 광상탐사 및 기존 광상의 연장성 확인 등의 목적으로 물리탐사를 적용하는 사례가 늘고 있다. 금속광상 탐사의 경우, 광화대가 주변에 비해 높은 전기전도도를 갖기 때문에 이를 탐지하기 위하여 전기비저항 탐사를 수행하는 것이 일반적이며, 현실 여건상 대부분 2차원 탐사가 수행된다. 그러나 국내 금속광상의 대부분이 맥상으로 분포하고 있으며, 광맥의 폭이 변한다거나 광맥이 단층에 의해 끊어져 있는 등 매우 복잡한 3차원 구조를 띤다. 따라서 3차원 광체구조에 대하여 2차원 탐사 및 2차원 해석을 수행할 경우 왜곡된 해석을 초래할 수 있다. 이에 이 연구에서는 이러한 3차원 광체구조에 대한 3차원 전기비저항 탐사의 적용성을 검토하기 위해 주향에 수직한 여러 측선에 대하여 2차원 쌍극자-쌍극자 탐사를 수행하여 얻은 자료와 3차원 단극자-단극자 배열을 이용하여 얻은 자료들을 각각 3차원 역산한 후 이들을 2차원 해석결과와 비교하였다. 3차원 맥상광체로는 맥폭이 변하는 모형과 맥이 단층에 의해 어긋난 모형 등을 가정하였다. 2차원 쌍극자-쌍극자 배열자료에 대해 3차원 역산을 수행하여 얻은 결과를 3차원 단극자-단극자 배열자료와 비교하면 단극자-단극자 탐사자료가 전체적인 구조는 잘 보여주나 배열의 특성상 쌍극자-쌍극자 탐사자료만큼 정확한 결과를 제시하지 못함을 확인할 수 있었다. 따라서 실제 탐사시 주향의 방향에 대한 정보를 알 수 있다면 주향에 수직한 2차원 측선들에 대해 쌍극자-쌍극자 탐사를 수행하고 이를 3차원 해석하는 것이 가장 바람직하다. 그러나 지표면에 광체가 드러나 있는 경우에 대해서는 이미 개발이 완료된 상태이며, 현재 남아있는 광상은 지하 깊은 곳에 매몰되어 있는 경우가 대부분이다. 이러한 경우 주향에 대한 정보를 알기 어려우므로 비록 해상도는 떨어지더라도 3차원 단극자-단극자 탐사를 수행하고 해석하는 것이 바람직할 것으로 보인다.
경상분지와 경기육괴 지역에서 획득된 총 7측점의 MT 자료를 이용하여 한반도의 광역적인 1차원 심부 전기비저항 구조를 조사하였다. 경상분지에 위치한 측점들은 주변 해양에 의한 왜곡을 보정하기 위해 반복적 텐서 벗겨내기 기법을 이용하여 해양효과를 보정하였다. 총 7측점에 대한 층서 구조 일차원 역산 결과는 천부지층, 상부지각, 하부 지각 및 상부 맨틀, 연약권으로 구분되는 4층 전기비저항 모델을 제시하였다. 이 중 상부지각과 하부 지각의 경계, 즉 콘라드면은 전 측점에서 뚜렷하게 나타났다. 경상분지 지역은 깊이 약 17km, 경기육괴 지역은 약 12km부근에 콘라드면이 존재하였다. 또한 경상분지 지역 상부지각의 전기비저항은 경기육괴에 비해 5배정도 높았다. 마지막으로 연약권은 깊이 약 100km 이하에 존재하며, 200-300 ohm-m의 전기비저항을 갖는 것으로 추정되었다.
최근 제체 등의 수자원시설물에 대한 안정성 검토를 위해 전기비저항 탐사가 많이 수행되고 있다. 본 연구에서는 전기비저항 조사를 통해 제체의 안정성을 검토하고자할 때, 제체의 3차원 형상에 의한 효과를 정확히 분석하여야만 손상 구간을 파악할 수 있음을 제시하고자 한다. 이의 검토를 위해 3차원 전기비저항 모델링을 통해 3차원 형태의 제체 모양을 수치모델로 구현하고, 제체 내부의 상태에 따른 겉보기 비저항과 역산 결과를 분석하였다. 또한 실제 3차원 곡면 형태를 가진 제체에서 전기비저항 탐사를 수행하여 그 결과를 분석하였다. 그 결과, 단순히 2차원으로 해석하였을 때 이상대로 추정되었던 구간이, 실제로는 3차원 곡면에 의한 기하학적 효과였음이 밝혀졌으며, 3개월 뒤에 수행된 우기의 추가 조사와 추후 일부 굴착을 통하여 제체의 내부가 안전한 상태임을 확인하였다.
탄소섬유로 보강한 에폭시 복합재료를 필라멘트 와인딩 공법으로 제조하고 이의 기계적 및 전기적
특성을 연구하였다. 사단자법으로 제작한 UD-CFRP의 전기비저항을 유리전이 온도 부근에서 온도의 함수로서 알아보았다. 실온에서 세로 전기비저항 ρa와 가로 전기비저항 ρc는 방향에 따른 강한 이방성을 보였으며 이들의 비는 약 1:3000이었다. UD-CFRP 시편의 세로 및 가로 전기비저항은 처리된 에폭시 물질의 유리전이 온도 Tg 아래에서는 온도에 선형으로 감소하는 거동을 보였다. 그러나 Tg 위에서 UD-CFRP의 가로 전기비저항은 금속과 같은 거동을 나타내며 온도의 지수승에 비례하여 증가하였다. 전기비저항이 양의 온도 계수를 갖는 메커니즘은 Tg 위에서 온도가 증가함에 따라 탄소섬유 사이의 접촉이 끓어져서 전하운반자의 깡총뛰기나 터널링이 감소하기 때문으로 생각된다. 세로방향의 dc 전도에 관한 활성화 에너지는 Tg 아래에서 0.005 eV이고, Tg 위에서는 0.08 eV이었다.