검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 107

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the effect of the microstructure of Li1.3Al0.3Ti1.7(PO4)3 (LATP), a solid electrolyte, on its ionic conductivity. Solid electrolytes, a key component in electrochemical energy storage devices such as batteries, differ from traditional liquid electrolytes by utilizing solid-state ionic conductors. LATP, characterized by its NASICON structure, facilitates rapid lithium-ion movement and exhibits relatively high ionic conductivity, chemical stability, and good electrochemical compatibility. In this study, the microstructure and ionic conductivity of LATP specimens sintered at 850, 900, and 950oC for various sintering times are analyzed. The results indicate that the changes in the microstructure due to sintering temperature and time significantly affect ionic conductivity. Notably, the specimens sintered at 900oC for 30 min exhibit high ionic conductivity. This study presents a method to optimize the ionic conductivity of LATP. Additionally, it underscores the need for a deeper understanding of the Li-ion diffusion mechanism and quantitative microstructure analysis.
        4,000원
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For appropriate nutrient management and enhanced plant growth, soil sensors which reflect soil nutrient levels are required. Because there is no available sensor for nutrient monitoring, electrical conductivity (EC) sensor can be used to evaluate soil nutrient levels. Soil nutrient management using EC sensors would be possible by understanding the relationship between sensor EC values and soil temperature, moisture, and nutrient content. However, the relationship between soil sensor EC values and plant available nutrients was not investigated. Therefore, the objectives of the study were to evaluate effect of different amount of urea on soil EC monitored by sensors during pepper and broccoli cultivation and to predict the plant available nutrient contents in soil. During the cultivation period, soil was collected periodically for analyzing pH and EC, and the available nutrient contents. The sensor EC value increased as the moisture content increased, and low fertilizer treated soil showed the lowest EC value. Principal component analysis was performed to determine the relationship between sensor EC and available nutrients in soil. Sensor EC showed a strong positive correlation with nitrate nitrogen and available Ca. In addition, sum of available nutrients such as Ca, Mg, K, P, S and N was positively related to the sensor EC values. Therefore, EC sensors in open field can be used to predict plant available nutrient levels for proper management of the soil.
        4,000원
        5.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-temperature and high-pressure post-processing applied to sintered thermoelectric materials can create nanoscale defects, thereby enhancing their thermoelectric performance. Here, we investigate the effect of hot isostatic pressing (HIP) as a post-processing treatment on the thermoelectric properties of p-type Bi0.5Sb1.5Te3.0 compounds sintered via spark plasma sintering. The sample post-processed via HIP maintains its electronic transport properties despite the reduced microstructural texturing. Moreover, lattice thermal conductivity is significantly reduced owing to activated phonon scattering, which can be attributed to the nanoscale defects created during HIP, resulting in an ~18% increase in peak zT value, which reaches ~1.43 at 100oC. This study validates that HIP enhances the thermoelectric performance by controlling the thermal transport without having any detrimental effects on the electronic transport properties of thermoelectric materials.
        4,000원
        6.
        2022.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This research investigated how adding Sb (0.75, 1.0, 2.0 and 5.0 wt%) to as-extruded aluminum alloys affected their microstructure, mechanical properties, electric and thermal conductivity. The addition of Sb resulted in the formation of AlSb intermetallic compounds. It was observed that intermetallic compounds in the alloys were distributed homogenously in the Al matrix. As the content of Sb increased, the area fraction of intermetallic compounds increased. It can be clearly seen that the intermetallic compounds were crushed into fine particles and homogenously arrayed during the extrusion process. As the Sb content increased, the average grain size decreased remarkably from 282.6 μm (0.75 wt%) to 109.2 μm (5.0 wt%) due to dynamic recrystallization by the dispersed intermetallic compounds in the aluminum matrix during the hot extrusion. As the Sb content increased from 0.75 to 2.0 wt%, the electrical conductivity decreased from 61.0 to 59.8 % of the International Annealed Copper Standard. Also, as the Sb content increased from 0.75 to 2.0 wt%, the ultimate tensile strength did not significantly change, from 67.3 to 67.8 MPa.
        4,000원
        8.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 에너지를 실시간으로 저장할 수 있는 저장장치 중 열에너지 저장 콘크리트를 대상으로 재료의 미세구조와 물성(열전도 도)의 상관관계를 분석하는 연구를 수행하였다. 에너지 저장 콘크리트의 열전도 성능을 증가시키기 위해 혼화재인 그라파이트 (graphite)를 사용하였다. 그라파이트가 시멘트 질량의 10%와 15%를 치환한 시편과 일반 콘크리트(OPC) 시편을 제작하여 그라파이 트의 혼입에 따른 미세구조 변화 및 열전도도의 영향을 마이크로 스케일에서 분석하였다. 마이크로-CT를 활용하여 OPC와 그라파이 트를 사용한 콘크리트의 공극률을 비교하였으며, 확률함수를 사용하여 미세구조 특성을 정량화하였다. 미세구조 특성 차이가 열전도 도에 미치는 영향을 확인하기 위해 3차원 가상 시편을 제작하여 열해석을 수행하였으며, 이를 열평판법을 사용하여 측정한 열전도도 실험 결과와 비교하였다. 열해석 수행 시 그라파이트 재료가 지닌 열전도도 성능을 반영하기 위하여 해석 결과와 실험 결과를 기반으 로 고체상의 열전도도를 역해석을 통해 계산하였으며, 그라파이트가 시편의 열전도도에 미치는 영향에 대해 분석하였다.
        4,000원
        10.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigate the effects of Yb2O3 and calcium aluminosilicate (CAS) glass as sintering additives on the sintering behavior of AlN. The AlN specimens are sintered at temperatures between 1700oC and 1900oC for 2 h in a nitrogen atmosphere. When the Yb2O3 content is low (within 3 wt.%), an isolated shape of secondary phase is observed at the AlN grain boundary. In contrast, when 3 wt.% Yb2O3 and 1 wt.% CAS glass are added, a continuous secondary phase is formed at the AlN grain boundary. The thermal conductivity decreases when the CAS glass is added, but the sintering density does not decrease. In particular, when 10 wt.% Yb2O3 and 1 wt.% CAS glass are added to AlN, the flexural strength is the highest, at 463 MPa. These results are considered to be influenced by changes in the microstructure of the secondary phase of AlN.
        4,000원
        11.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 μm; however, this value drops to 914 and 529 μm with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the asextruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.
        4,000원
        12.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        고준위방사성폐기물의 처분은 고심도 암반내에 처분시스템을 구축하는 심층 처분방법이 고려된다. 심층 처분은 처분용기, 완충재, 뒷채움재, 근계암반의 설계 요소인 공학적방벽과 천연 방벽으로 구성된다. 공학적방벽 중에서 벤토나이트 완충재는 암반으로부터 유입되는 지하수 흐름을 최소화하고 핵종 유출을 저지하는 기능을 한다. 지하수 유입으로 인한 완충재의 수리전도도 특성 규명은 처분장 공학적방벽의 안정성 및 건전성에 대한 성능 평가에 있어 중요한 사안이다. 본 연구에서는 경주 벤토나이트를 이용하여 다양한 건조밀도와 온도 조건에 따라 포화 수리전도도 실험을 수행하였으며, 120개의 실험 결과 를 다중 회귀 분석을 통해 수리전도도 추정 모델을 제시하였다. 실험 결과에서는 건조밀도가 커질수록 수리전도도가 감소하는 경향이 나타났다. 또한, 온도가 증가할수록 수리전도도가 증가하였다. 이러한 실험 결과들을 종합한 다중 회귀 분석 결과에서는 수리전도도 추정식의 결정계수(R2)가 0.93으로 높게 나타났다. 본 연구에서 제시된 수리전도도 추정식은 벤토나이트 완충재의 성능과 연관된 건조밀도와 온도의 영향을 고려하여 처분시스템의 공학적방벽 설계에 활용 될 것으로 판단된다.
        4,000원
        13.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        고준위폐기물을 심지층에 처분하기 위한 공학적방벽의 구성 요소로는 처분용기, 완충재, 뒷채움재 등이 있다. 이 중 완충재는 처분용기와 근계암반 사이의 빈 공간에 설치되는 물질로써, 주변 지하수로부터 처분용기를 보호하며 방사성 핵종의 유출을 저지하는 등의 역할을 한다. 또한 처분용기에서 발생하는 고온의 열량은 완충재로 직접 전파되기에 완충재의 열전도도는 처분시스템의 안전성 평가에 있어 매우 중요하다고 할 수 있다. 따라서 본 연구에서는 국내 경주산 압축 벤토나이트 완충재의 열전도도 특성을 규명하였으며 실제 처분용기에서 발생되는 고온의 특성을 반영하여 상온에서 80~90℃까지의 범위에서 압축 벤토나이트의 열전도도를 측정하였다. 온도증가에 따라 압축 벤토나이트의 열전도도는 5~20% 가량 증가하였으며 초기 포화도가 클수록 열전도도 증가는 더 크게 나타났다.
        4,000원
        14.
        2020.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of Sm addition (0, 0.05, 0.2, 0.5 wt%) on the microstructure, hardness, and electrical and thermal conductivity of Al-11Si-1.5Cu aluminum alloy were investigated. As a result of Sm addition, increment in the amount of α-Al and refinement of primary Si from 70 to 10 μm were observed due to eutectic temperature depression. On the other hand, Sm was less effective at refining eutectic Si because of insufficient addition. The phase analysis results indicated that Sm-rich intermetallic phases such as Al-Fe-Mg-Si and Al-Si-Cu formed and led to decrements in the amount of primary Si and eutectic Si. These microstructure changes affected not only the hardness but also the electrical and thermal conductivity. When 0.5 wt% Sm was added to the alloy, hardness increased from 84.4 to 91.3 Hv, and electric conductivity increased from 15.14 to 16.97 MS/m. Thermal conductivity greatly increased from 133 to 157 W/m·K.
        4,000원
        17.
        2019.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thermal management is a critical issue for the development of high-performance electronic devices. In this paper, thermal conductivity values of mild steel and stainless steel(STS) are measured by light flash analysis(LFA) and dynamic thermal interface material(DynTIM) Tester. The shapes of samples for thermal property measurement are disc type with a diameter of 12.6 mm. For samples with different thickness, the thermal diffusivity and thermal conductivity are measured by LFA. For identical samples, the thermal resistance(Rth) and thermal conductivity are measured using a DynTIM Tester. The thermal conductivity of samples with different thicknesses, measured by LFA, show similar values in a range of 5 %. However, the thermal conductivity of samples measured by DynTIM Tester show widely scattered values according to the application of thermal grease. When we use the thermal grease to remove air gaps, the thermal conductivity of samples measured by DynTIM Tester is larger than that measured by LFA. But, when we did not use thermal grease, the thermal conductivity of samples measured by DynTIM Tester is smaller than that measured by LFA. For the DynTIM Tester results, we also find that the slope of the graph of thermal resistance vs. thickness is affected by the usage of thermal grease. From this, we are able to conclude that the wide scattering of thermal conductivity for samples measured with the DynTIM Tester is caused by the change of slope in the graph of thermal resistance-thickness.
        4,000원
        18.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent conducting electrodes are essential components in various optoelectrical devices. Although indium tin oxide thin films have been widely used for transparent conducting electrodes, silver nanowire network is a promising alternative to indium tin oxide thin films owing to its lower processing cost and greater suitability for flexible device application. In order to widen the application of silver nanowire network, the electrical conductance has to be improved while maintaining high optical transparency. In this study, we report the enhancement of the electrical conductance of silver nanowire network transparent electrodes by copper electrodeposition on the silver nanowire networks. The electrodeposited copper lowered the sheet resistance of the silver nanowire networks from 21.9 Ω/□ to 12.6 Ω/□. We perform detailed X-ray diffraction analysis revealing the effect of the amount of electrodeposited copper-shell on the sheet resistance of the core-shell(silver/copper) nanowire network transparent electrodes. From the relationship between the cross-sectional area of the copper-shell and the sheet resistance of the transparent electrodes, we deduce the electrical resistivity of electrodeposited copper to be approximately 4.5 times that of copper bulk.
        4,000원
        20.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, MgO–CaO–Al2O3–SiO2 (MCAS) nanocomposite glass powder having a mean particle size of 50 nm and a specific surface area of 40 m2/g is used as a sintering additive for AlN ceramics. Densification behaviors and thermal properties of AlN with 5 wt% MCAS nano-glass additive are investigated. Dilatometric analysis and isothermal sintering of AlN-5wt% MCAS compact demonstrates that the shrinkage of the AlN specimen increases significantly above 1,300oC via liquid phase sintering of MCAS additive, and complete densification could be achieved after sintering at 1,600oC, which is a reduction in sintering temperature by 200oC compared to conventional AlN-Y2O3 systems. The MCAS glass phase is satisfactorily distributed between AlN particles after sintering at 1,600oC, existing as an amorphous secondary phase. The AlN specimen attained a thermal conductivity of 82.6 W/m·K at 1,600oC.
        4,000원
        1 2 3 4 5