A computational analysis was performed to study the thermal characteristics within the injection molding process of polygon mirrors in LiDAR systems. Such polygon mirrors are significantly influenced by the geometric shape of the injection mold as well as temperature and operating conditions. The analysis included the temperature distribution, heat flux, and variations in heat transfer rate of the polygon mirror from initial conditions. From the beginning of the injection process, temperature of the polygon mirror changes rapidly, leading to conductive heat transfer to the mold. There are large variations in the mirror temperature change depending on local position, and surface heat flux are affected by internal cooling path. These results are expected to be used as thermal design data for various polygon mirror processes.
Numerical analysis has been carried out to predict the thermal characteristics for a LED lens in mold core system. These thermal characteristics inside the lens are largely affected by geometry, material, and initial conditions of the mold core and lens system. Local temperature and heat flux variation inside the lens are compared for several initial temperatures. Maximum temperature inside the lens was decreased rapidly from the beginning of cooling process up to about 10 seconds. There was also large variation of the heat flux at the upper and lower surfaces of the lens with initial temperature distribution. And the heat flux from the thin lower surface of the lens was relatively higher than the opposite-side thick region. In addition, overall heat transfer rate from the lens through the mold core has similar transient distribution from the beginning. These results can be applied as basic heat transfer data for the LED lens design and manufacturing process in the mold core system.
Experimental analysis has been carried out on double glazed glass of a commercial vehicle to analyze thermal characteristics for various air flow conditions. This double glazed glass has an important effect on the blocking performance of heat transfer with the vehicle's moving speed and ambient thermodynamic conditions. Calculated thermal resistances and heat transmission coefficient through the glass were compared with measured air indoor and outdoor temperatures including the glass surfaces using an experimental apparatus. The thermal resistance through the glass was increased with the indoor air temperature while overall heat transmission coefficient was decreased due to the convective heat transfer effect. As indoor air became warmer, the effect of air flow velocity on the heat transmission coefficient was reduced significantly. It is expected that these results can be used as applicable design data for the development of the double glazed glass system for many commercial vehicles.
환경풍동 내 공기의 온도와 속도 변화에 대한 공기 유동과 전열 특성을 분석하기 위하여 수치해석을 수행하였다. 풍동 시험부 내 각 단면의 평균 속도, 균일도, 그리고 대류 열전달계수는 노즐 출구의 온도와 속도에 따라 큰 영향을 받게 된다. 노즐 출구로부 터 멀어질수록 평균 속도와 균일도가 점차 감소하고, 노즐 출구의 속도가 50km/h일 때 공기온도가 -40~60oC까지 변화함에 따라 단면 평균 속도와 균일도가 각각 약 12.9%와 13.5% 정도까지 증가하였다. 또한 시험부 바닥의 대류 열전달계수는 50~150km/h의 속도 변화에 대해 약 59.7%까지 증가하였으며, 공기의 온도와 속도가 증가함에 따라 시험부 열 유속도 함께 증가하였다. 본 연구에서 수행한 결과들은 최적의 환경풍동 설계에 필요한 주요 설계 자료로 활용될 수 있을 것으로 기대된다.
The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.
최근 많은 시간을 실내에서 생활하는 현대인에게 실내 공기의 질은 매우 중요한 개념으로 자리 잡고 있으며, 이는 현재 새롭게 대두되어야 할 문제이다. 실내 공기질은 온도, 습도 등으로 결정이 된다. 따라서 현재 이러한 인자를 제어하여 실내 공기질을 개선하고 있지만, 실내 공기질 개선을 위해서는 에너지소비가 심하다는 단점이 있다. 그리하여 전열 교환을 적용한 문제를 해결하려는 방법에 대한 연구가 활발히 이루어지고 있고, 전열 교환막을 이용하여 효과적으로 제어하고자 하는 많은 연구가 이루어지고 있는 추세이다. 따라서, 본 연구에서는 전열 교환 분리막 적용을 위하여, poly(styrene-ethylene-butylene-styrene)고분자에 암모늄을 도입하여 친수성을 가지는 아민화된 SEBS 고분자를 합성 및 특성평가를 진행하였다.
본 연구는 온실의 관류전열량을 분석하고 예측하는데 필요한 기초자료 제공을 위하여, 공기막 이중 PO필름의 열저항식을 모델링하였고, 전도, 복사, 대류에 의한 열저항 특성을 규명하였다. 또한 열저항식의 타당성 검증을 위해 열저항식에 의한 관류전열량의 계산값과 실험값을 비교·분석하였다. 공기막 이중 PO필름의 열저항식은 PO필름, 공기막, PO필름의 직렬 열저항식으로 구성되며, 공기막은 복사와 대류에 의한 병렬 열저항식으로 구성된다. 고온부 T1의 평균온도는 276.1K, 저온부 T2의 평균온도는 266.8K로 나타났으며, 다른 조건들이 동일할 경우 챔버 내부온도가 높을수록 T1과 T2의 평균온도와 온도차가 증가하는 것을 확인할 수 있었다. 전도열저항은 0.00091K ·W−1로 전체 열저항의 1% 미만으로 매우 미미한 수준이고, 공기막의 열저항이 0.18K ·W−1로 전체 열저항의 99% 이상을 차지하는 것으로 나타났다. 공기막의 경우 대류열 저항이 복사열저항에 비해 1.33~2.08배 정도 크게 나타났으며, 복사열저항은 평균온도의 3제곱에 반비례하고 대류열저항은 온도차가 4.7, 5.3, 5.5, 5.7, 12.3, 13.2, 13.3, 13.5, 13.8 및 14.0K로 증가할 때 각각 0.78, 0.75, 0.74, 0.73, 0.57, 0.56, 0.56, 0.56, 0.55 및 0.55K ·W−1 로 감소하였다. 관류전열량의 계산값과 실험값의 차이는 실험조건별로 0.6~17.2W의 범위로 평균 6.9W였으며, 실험값은 계산값의 79.8~97.7% 범위로 평균 87.3% 수준으로 나타났다. 전체적인 계산값과 실험값의 관류전열량 경향성은 잘 일치하고 있으며, 공기막 이중필름의 열 저항은 공기막 두께 및 주입공기의 종류와는 직접적인 상관관계를 보이지 않았다.