This study evaluated the field applicability of a real-time odor monitoring system combined with ozone water spraying technology to effectively control odors generated in livestock manure recycling facilities. Research was conducted at a Natural Circulation Agriculture Center located in N City, where concentrations of ammonia (NH3), hydrogen sulfide (H2S), and volatile organic compounds (VOCs) were measured in real time. Based on real-time data, ozone water was sprayed to assess the odor reduction rate, and the impact on surrounding areas was predicted through odor dispersion modeling. The results showed that the ammonia concentration measured at the upper section of the liquid aeration tank before ozone water spraying was 8.02 ppm, exceeding the emission limit of 1 ppm. VOCs were also found to have significantly contributed to odor generation. However, after spraying ozone water at a rate of 7 L/min and maintaining a concentration of 2.5 mg/L, ammonia was reduced by approximately 50%, and VOCs were reduced by about 98%, demonstrating a strong odor-reducing effect. Odor dispersion modeling using the CALPUFF modeling system simulated the range of odor dispersion before and after ozone water spraying. The results indicated that after ozone water spraying, the ammonia concentration at the facility boundary met the emission limit, effectively suppressing odor dispersion. In particular, the ozone water spraying system linked with the real-time sensor enabled automated odor control based on real-time data, demonstrating its potential for resolving odor complaints and ensuring compliance with environmental regulations.
This study developed an IoT-based agricultural well control system and demonstrated it through a control system in the current state of domestic open-field smart farms where systematic management is insufficient due to the difficulty of collecting accurate data such as agricultural water intake and usage. As a result, it was possible to derive the optimal control system test results according to the watering conditions for each schedule by conducting automatic control focusing on periods when there is no precipitation. This means that irrigation can be carried out smoothly during the time when irrigation is needed to improve crop quality and secure farm income, and as a result, it is possible to systematically manage and operate among demonstration farms connected to irrigation, resulting in a shortage of agricultural water and a resolution of supply imbalances.
For motor controller designers, building a simulation environment is not a difficult process. After verifying the controller by simulation, it is common to select 20kHz for the current control loop, 1kHz for the speed loop, and 100Hz for the position loop when implementing the actual HW embedded system. This is because maximized cycles (20kHz) for each control loop are unnecessary in control theory and are a waste of cost and HW resources. However, in a simulation environment, each loop will often have the same control cycle (20kHz maximum). This is because we think it is unnecessary to reflect this part in the simulation. In this paper, it is shown that the difference in the sampling time of each control loop makes a big difference in the simulation result, and as a solution, it is proposed to apply LPF to the position loop output stage. In the process, the reasons for the differences were analyzed, and the effect of LPF, the reason for application, and the feasibility of implementation were proved by actual software coding.
In this study, the load fluctuation of the main engine is considered to be a disturbance for the jacket coolant temperature control system of the low-speed two-stroke main diesel engine on the ships. A nonlinear PID temperature control system with satisfactory disturbance rejection performance was designed by rapidly transmitting the load change value to the controller for following the reference set value. The feed-forwarded load fluctuation is considered the set points of the dual loop control system to be changed. Real-coded genetic algorithms were used as an optimization tool to tune the gains for the nonlinear PID controller. ITAE was used as an evaluation function for optimization. For the evaluation function, the engine jacket coolant outlet temperature was considered. As a result of simulating the proposed cascade nonlinear PID control system, it was confirmed that the disturbance caused by the load fluctuation was eliminated with satisfactory performance and that the changed set value was followed.
자율운항선박(MASS : Maritime Autonomous Surface Ships)은, 고도의 자율도를 가지고, 계획된 경로를 따라 자율 운항하지만, 필요시 육상원격제어센터(SRCC : Shore Remote Control Center)에서 선박의 운항에 직접 개입할 수 있다. 본 연구에서는 이러한 자율운항 선박의 운항을 육상에서 모니터링하고 유사시 원격제어하는 역할을 담당할 육상원격제어사(SRCO : Shore Remote Control Officer)의 교육 훈련에 필요한 시뮬레이터 시스템의 운용개념과 이를 가능하게 하기 위한 요구기능에 대해 검토하였다. 육상원격제어 시뮬레이터 시 스템은, 다수의 자율운항선박의 운항상황을 모니터링하는 Monitoring Station, 유사시 특정 선박의 운항에 직접 원격개입하는 Control Station의 기능을 모의하도록 하였고, 시뮬레이션 종합통제실, 자율운항선박 운항상황 모의 시뮬레이터, 그리고 주변의 유인선 운항을 모의하기 위한 통항선 시뮬레이터 등으로 구성하였다. 기능적으로는, 육상에서 선박을 직접 제어하기 위하여 원격으로 개입하는 ESRC(Emergency Situation for Remote Control) 상황을 정의하여 이러한 상황을 모의할 수 있도록 하였다.
This paper presents the torque ripple reduction control to apply an SRM to the X-by-wire drive systems which replaces the mechanical control method with “by-wire” to secure the flexibility of design and modification. However, torque ripples generated from the SRM can affect the performance and stability of the system. The proposed torque ripple control schemes are compared with the previously studied methods by dynamic simulation in regards to torque distribution functions and instant torque controller.
This paper proposes predictive deadbeat current control, one of the model predictive controls. The predictive deadbeat control is compared to the conventional current control methods to validate its feasibility in X-by-Wire systems.
Many piping systems installed in the power plant are directly related to the safety and operation of the plant. Various dampers have been applied to the piping system to reduce the damage caused by earthquakes. In order to reduce the vibration of the piping system, this study developed a steel coil damper (SCD) with a straightforward structure but excellent damping performance. SCD reduces the vibration of the objective structure by hysteretic damping. The new SCD damper can be applied to high-temperature environments since it consists of steel members. The paper introduces a design method for the elastoplastic coil spring, which is the critical element of SCD. The practical applicability of the design procedure was validated by comparing the nonlinear force-displacement curves calculated by design equations with the results obtained from nonlinear finite element analysis and repeated loading test. It was found that the designed SCD’s have a damping ratio higher than 25%. In addition, this study performed a set of seismic tests using a shaking table with an existing piping system to verify the vibration control capacity on the piping system by SCD. Test results prove that the SCD can effectively control the displacement vibration of the piping system up to 80%.
선박으로부터 발생하는 배출가스에 대한 규제가 강화되고 이를 해결하기위한 대안으로 전기추진시스템의적용이 대형상선에서 부터 중ㆍ소형선박에 이르기까지 그 사용이 증가되고있다. 전기추진시스템의 효율 향상을 위한 방법으로 발전원의 개선, 배터리ㆍ연료전 지ㆍ태양광 등의 친환경 발전원의 시스템 연계 및 정류기, 전력변환장치, 추진전동기의 개발과 제어방식의 연구를 들 수 있다. 그 중 정류 방식에 있어 상천이변압기과 다이오드를 이용하는 방식이 널리 사용되었으나, 직류배전을 이용한 친환경발전원의 계통 연계, 가변속 발 전원의 사용, 중ㆍ소형 전기추진시스템의 적용을 통해 전력용 반도체 소자를 이용한 AFE정류기에 대한 수요가 증대되고 있다. 이러한 AFE 정류기를 제어하는 방식에 있어 기존의 비례적분제어기가 아닌 신경회로망을 이용한 방식을 본 연구에서는 제안하였다. 기존의 제 어기 데이터를 활용하여 Matlab/Simulink를 통해 학습한 신경회로망제어기를 설계하고 PSIM을 통해 설계된 정류시스템에 신경회로망 제어 기를 적용하여 부하변동에 따른 직류출력단의 파형과 역률 개선의 유효성을 확인하였다. 이는 공간이 협소한 중소형 친환경 선박의 정류 시스템으로써 적용이 가능하다.