In this paper, the hybrid prefabricated retrofit method is suggested and examined. Six specimens were manufactured in order to evaluate their flexural performance of RC beams. Test parameters include the added beam depth, the thickness of bottom plate, the number of the steel plate with openings. The effects of these parameters on the flexural performance of reinforced concrete beams were examined. The load-deflection behavior and modes of cracks are presented from the test results. At the test result, the flexural capacity and the ductility of the hybrid prefabricated retrofit method was increased satbly. Also, comparing the flexural performance of RC beam and retrofitted RC beams, it was increased that the flexural strength is about 3.3 times, the ductility is about 2.55 times, and energy dissipation capacity is about 7.34 times.
In this paper, the hybrid prefabricated retrofit method that improve structural performance and reduce construction period was developed by using a finite element analysis. The hybrid prefabricated retrofit method consist of a Z-shaped side plate, a L-shaped lower plate, and a bottom plate containing an steel plate with openings. This shape has advantage that a retrofit method is possible regardless of the size of the beams and a follow-up process such as reinforcement bars placing are not required. The finite element analysis of hybrid Prefabricated retrofit method showed the most ideal stress distribution when the thickness of bottom plate was 10mm, the thickness of the L-shaped lower plate was 5mm, the thickness of the Z-shaped side plate was 2.5mm, and the bolt spacing was 200mm. The bending strength equation of Hybrid prefabricated retrofit method was proposed through the plastic stress distribution method in KDS 41 31 00. The result of Comparison the proposed equation with the finite element analysis, it is determined that the design of hybrid prefabricated retrofit method is possible through the KDS 41 31 00.
As the size of the wind turbine tower becomes larger and larger, research on assembled wind turbine tower that is advantageous for transportation and installation is continuing. Large wind turbine tower require door openings for maintenance. The opening of the tower has an irregular cross section, and an excessive stress is generated due to the door opening. The result is structural damage to the tower and many accidents. In this research, stress analysis was performed on a model with internal stiffener to prevent excessive stress. The stress was investigated around the openings where the tower was resonant and excessive stressed, and the shape of the openings was optimized. Through optimization, we confirmed that the maximum stress was reduced by about 6% with respect to the initial value.
Recently, as the number of earthquakes has increased, the building structure standard has been revised in 2016. In order to minimize earthquake damage, steel frame is used as the most economical and efficient lateral resistance system. Also, when the steel braces are subject to Compressive load, which causes unstable behavior of the structure. In order to verify the compressive behavior of the reinforced Braces, structural performance tests were conducted with variables of slenderness ratio and the amount of reinforcement. This study investigates the structural performance of existing double - angle steel braces by reinforcing them with non- welded/assembled light-weight steel frames and proposes a suitable reinforced section.
This paper improves algorithms for an assembly-type flowshop scheduling problem in which each job is to assemble two types of components and makespan is the objective measure. For the assembly, one type of the components is outsourced with job-dependent
This paper considers an assembly-type flowshop scheduling problem in which each job is assembled with two types of components. One type of the components is outsourced with positive lead time but the other type is fabricated in-house at the first stage.
The development and verification of seismic performance possible role as moment resisting frames connection is needed because rigidly-connected and assembled lightweight steel frame system is not easy to obtain the seismic performance at the same time.
종래 브레이스시스템은 횡력저항 및 층변위제어에 효율적이며 골조물량 감소에 따른 경제성이 향상되어 일반적인 강구조 횡력저 항시스템으로 적용되고 있다. 그러나 압축측에서 항복응력에 도달하기 전 가새의 좌굴이 발생하여 충분한 내력을 발휘하지 못하고, 내력열화 형의 이력거동으로 불안정상태가 된다. 좌굴에 의한 내력저하 개선시스템으로 중심재를 구속하여 좌굴방지가 가능한 비좌굴가새는 심재의 항 복 이후에도 안정적인 이력특성을 나타내어 종래 브레이스에 비하여 에너지흡수능력이 우수하다. 최근 10년간 미국, 일본 및 대만에서 매우 다 양한 형상의 비좌굴가새가 제안되었으나, 기존의 실험연구에서는 그 형상이 매우 제한적인 경향을 보이고 있다. 본 연구에서는 조립형 Precast RC 보강재를 가지는 비좌굴가새를 제작하고 이력특성을 평가하기 위한 부재실험을 수행하였다. 또한 실험결과를 AISC(2005)의 요구조항과 비교하였다.