검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 103

        1.
        2025.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There are now many seismic observatory stations, excluding the acceleration monitoring network for infrastructures, of more than 300 operated by several public and governmental organizations across South Korea. The features of the site and properties of the stations were not investigated, and they have been assumed or guessed to estimate the site-specific seismic responses during the 2016 Gyeongju and 2017 Pohang earthquake events. For these reasons, various and intensive geotechnical and geophysical investigations have been conducted to quantify the site characteristics at 15 seismic stations selected in southeastern Korea. The VS profiles were, at first, obtained by performing only a downhole seismic test (DHT) at 7 stations, and were compared with those from a surface wave method. Then, the shear wave velocity (VS) profiles were deduced by combining three types of in situ seismic methods composed of a cross-hole seismic test, DHTs, and full-waveform sonic loggings at the 8 other stations, especially to complement the application limits of DHT and reduce the depth-dependent uncertainty in VS profile. The representative site characteristic profiles for each station regarding VS and VP with borehole stratigraphy and density were determined based on robust investigations. Various site parameters related to seismic responses at the seismic stations of interest were obtained for the site-specific geotechnical information, which would be useful to earthquake engineering practices.
        4,000원
        2.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to design a seismic safety of a cabinet affected by an earthquake, vibration analysis was performed using a model cabinet. In order to analyze the vibration characteristics of the cabinet under earthquake conditions, 3D finite element analysis was performed using ANSYS Workbench and SolidWorks. The modal analysis of the cabinet showed nine natural modes and natural frequencies, and showed the deformation and vibration of the cabinet panel for each mode. The frequencies of the 1st and 2nd modes, which are low modes, were 10% of the natural frequency value of the 9th mode, so it was easy to predict the possibility of resonance occurrence. The response spectrum due to the earthquake showed that the displacement, acceleration, and stress distribution of the cabinet had different behaviors in the x, y, and z directions, and especially showed very large values in the z direction. Although the vibration characteristics of the structure were evaluated using the modal characteristics and response spectrum for the cabinet, research on the application of a tuned mass damper is necessary for the dynamic characteristics process of the cabinet due to an earthquake and resonance reduction.
        4,000원
        3.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 수소 탱크를 고정하는 강재 볼트의 부식으로 인한 성능 저하 문제를 해결하기 위해 내부식성 복합재료로 알려진 Glass Fiber Reinforced Polymer (GFRP) 및 Carbon Fiber Reinforced Polymer (CFRP)를 활용한 앵커 시스템을 제안하고, 이를 지진 하 중 하에서의 안전성 평가를 통한 적용 타당성 검토를 수행하였다. 연구에서는 현장 조사를 통해 실제 사용 중인 수소 탱크의 설계 제 원을 확보한 후 이를 바탕으로 유한요소해석을 수행하였으며, AC 156 인공 지진파를 적용하여 FRP 앵커 볼트와 기존 강재 앵커의 성 능을 비교 분석하였다. 주요 분석 결과, FRP 앵커 볼트를 적용한 수소 탱크는 강재 앵커 볼트에 비해 고유 진동수가 21% 증가하여 구 조적 강성이 향상됨을 확인하였다. 또한, 가속도 응답 분석 결과 FRP 앵커 볼트는 상부 가속도를 감소시켜 지진 하중에 대한 저항성을 증진하는 것으로 나타났다. 응력 해석에서는 FRP 앵커 볼트가 강재 앵커 볼트에 비해 유효 응력이 약 91% 감소하여, 구조적 안전성이 크게 개선되었다. 그러나, FRP 앵커 볼트 적용 시 기초 콘크리트에 가해지는 쪼갬 인장 응력이 강재 앵커 대비 최대 3.5배 증가하는 것으로 나타났으며, 이에 따라 FRP 앵커 볼트 사용 시 기초 콘크리트의 보강이 필요할 것으로 사료된다. 이러한 연구 결과는 수치해석 에 국한된 결과로, 향후 실제 지진 하중을 모사한 실험적 검증이 필요하다. FRP 앵커 볼트의 적용 가능성은 향후 연구를 통해 광범위 하게 평가될 것이며, 이를 통해 수소 인프라의 내구성과 안전성을 더욱 강화할 수 있을 것으로 기대된다.
        4,000원
        4.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        원전 내 전기기기의 내진성능 평가는 안전성 확보에 매우 중요하다. 이 연구에서는 원전에 설치되는 전기기기의 동특성 및 현장조사 결과를 참고하여 모형 캐비닛과 앵커기초를 설계 및 제작하였다. 제작된 모형 캐비닛을 대상으로 진동대실험을 수행하였다. 실험 결과를 바탕으로 유한요소모델을 작성하고 지진응답해석을 수행하였다. 입력지진동이 커짐에 따른 실험 및 해석 결과를 비교하여 모형 캐비닛의 지진거동특성을 분석하였다. 두 결과에 대한 모형 캐비닛의 지진거동은 다르며 내진성능에 큰 차이가 발생할 수 있다. 따라서 캐비닛과 콘크리트 기초 사이의 상호작용을 고려할 수 없는 경우 캐비닛의 지진거동 특성은 실험적으로 평가하는 것이 적절할 것으로 판단하였다.
        4,000원
        5.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Phayathonzu temple in Myanmar was made of masonry bricks, and so it was vulnerable to lateral load such as earthquake. Especially, it has many difficulties in structural modeling and dynamic analysis because the discontinuous characteristics of masonry structure should be considered. So, it is necessary to provide the seismic performance evaluation technology through the inelastic dynamic modeling and analysis under earthquake loads for the safety security of masonry brick temple. Therefore, this study analyzes the seismic behavior characteristics and evaluates the seismic performance for the 479 structure with many cracks and deformations. Through the evaluation results, we found out the structural weak parts on earthquake loads.
        4,000원
        6.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When an earthquake occurs, the severity of damage is determined by natural factors such as the magnitude of the earthquake, the epicenter distance, soil properties, and type of the structures in the affected area, as well as the socio-economic factors such as the population, disaster prevention measures, and economic power of the community. This study evaluated the direct economic loss due to building damage and the community’s recovery ability. Building damage was estimated using fragility functions due to the design earthquake by the seismic design code. The usage of the building was determined from the information in the building registrar. Direct economic loss was evaluated using the standard unit price and estimated building damage. The standard unit price was obtained from the Korean Real Estate Board. The community’s recovery capacity was calculated using nine indicators selected from regional statistical data. After appropriate normalization and factor analysis, the recovery ability score was calculated through relative evaluation with neighboring cities.
        4,000원
        7.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Non-structural elements, such as equipment, are typically affixed to a building’s floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building’s structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.
        4,200원
        8.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The recent increase in earthquake activities has highlighted the importance of seismic performance evaluation for civil infrastructures. In particular, the container crane essential to maintaining the national logistics system with port operation requires an exact evaluation of its seismic response. Thus, this study aims to assess the seismic vulnerability of container cranes considering their seismic characteristics. The seismic response of the container crane should account for the structural members’ yielding and buckling, as well as the crane wheel’s uplifting derailment in operation. The crane’s yielding and buckling limit states were defined using the stress of crane members based on the load and displacement curve obtained from nonlinear static analysis. The derailment limit state was based on the height of the rail, and nonlinear dynamic analysis was performed to obtain the seismic fragility curves considering defined limit states and seismic characteristics. The yield and derailment probabilities of the crane in the near-fault ground motion were approximately 1.5 to 4.7 and 2.8 to 6.8 times higher, respectively, than those in the far-fault ground motion.
        4,000원
        9.
        2023.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In Korea, most nuclear power plants were designed based on the design response spectrum of Regulatory Guide 1.60 of the NRC. However, in the case of earthquakes occurring in the country, the characteristics of seismic motions in Korea and the design response spectrum differed. The seismic motion in Korea had a higher spectral acceleration in the high-frequency range compared to the design response spectrum. The seismic capacity may be reduced when evaluating the seismic performance of the equipment with high-frequency earthquakes compared with what is evaluated by the design response spectrum for the equipment with a high natural frequency. Therefore, EPRI proposed the inelastic energy absorption factor for the equipment anchorage. In this study, the seismic performance of welding anchorage was evaluated by considering domestic seismic characteristics and EPRI's inelastic energy absorption factor. In order to reflect the characteristics of domestic earthquakes, the uniform hazard response spectrum (UHRS) of Uljin was used. Moreover, the seismic performance of the equipment was evaluated with a design response spectrum of R.G.1.60 and a uniform hazard response spectrum (UHRS) as seismic inputs. As a result, it was confirmed that the seismic performance of the weld anchorage could be increased when the inelastic energy absorption factor is used. Also, a comparative analysis was performed on the seismic capacity of the anchorage of equipment by the welding and the extended bolt.
        4,000원
        11.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Gyeongju and Pohang earthquakes caused damages to many cultural properties; particularly, stone pagoda structures were significantly damaged among masonry cultural properties. To preserve these structures, it is necessary to understand their dynamic behavior characteristics under earthquakes. Analyses on such areas as deformation, frequency, maximum acceleration, permanent displacement, sliding, and rocking have to be performed. Although many analytical studies have already been conducted, dynamic behavior studies based on experiments are insufficient. Therefore, this study analyzed dynamic behavior characteristics by performing a shaking table experiment on a three-story stone pagoda structure at the Cheollongsa temple site damaged by the Gyeongju earthquake. As a result of the experiment, the displacements of stylobates did not occur significantly, but the tower body parts rotated. In particular, the rotation of the 1F main body stone was relatively larger than that of the other chief body stones because the 1F main body stone is relatively more slender than the other parts. In addition, the decorative top was identified as the component most vulnerable to sliding. This study found that the 1F main body stone is vulnerable to rocking, and the parts located on the upper part are more vulnerable to sliding.
        4,000원
        12.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.
        4,000원
        13.
        2021.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The dynamic characterization of a three-story auxiliary building in a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall is investigated in this study. The shear wall is subjected to a joint-research, round-robin analysis organized by the Korea Atomic Energy Research Institute, South Korea, to predict seismic responses of that auxiliary building in NPP through a shake table test. Five different intensity measures of the base excitation are applied to the shaking table test to get the acceleration responses from the different building locations for one horizontal direction (front-back). Simultaneously to understand the global damage scenario of the structure, a frequency search test is conducted after each excitation. The primary motivation of this study is to develop a nonlinear numerical model considering the multi-layered shell element and compare it with the test result to validate through the modal parameter identification and floor responses. In addition, the acceleration amplification factor is evaluated to judge the dynamic behavior of the shear wall with the existing standard, thus providing theoretical support for engineering practice.
        4,000원
        14.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2004년 5월 29일 발생한 울진해역지진(Mw 5.1)과 관련된 대기 인프라사운드 신호가 철원(진앙 거리 321 km) 및 대전(256 km) 관측소에 기록되었다. 신호의 지속시간은 수 분 이상이며, 음원 방향을 지시하는 후방-방위각은 28 o 이상의 큰 변화를 보였다. 역-투사 방법과 신호 감쇄 보정 결과, 인프라사운드 신호는 삼척-울진-포항까지 연결되는 약 4,600 km2 면적의 지반운동으로 발생하였으며, 음원 최대 크기(BSP)는 11.1 Pa로 계산되었다. 이 결과는 최대지반가속 도(PGA) 자료로 계산한 음원 최대 크기(PSP)와도 부합하고 있으며, 지진 발생 당시 인프라사운드 신호 탐지를 가능케 했던 최소 지반운동은 ~3.0 cm s−2 이상으로 확인되었다. 울진해역지진이 비록 동해 해역에서 발생하였지만, 진앙과 가 까운 강원도 남부-경상북도의 고지대를 따라 전파한 표면파의 지반운동으로 회절 인프라사운드가 효과적으로 발생한 것으로 해석된다. 인프라사운드 관측을 통한 원거리 지진 지반운동 특성 추정 방법은 지진관측망이 설치되어 있지 않거나 관측소 수가 적은 지역을 대상으로 활용이 가능할 것이다.
        4,200원
        15.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study simulated strong ground motion waveforms in the southern Korean Peninsula, based on the physical earthquake modeling of the Southern California Earthquake Center (SCEC) BroadBand Platform (BBP). Characteristics of intensity attenuation were investigated for M 6.0-7.0 events, incorporating the site effects. The SCEC BBP is software generates broadband (0-10 Hz) ground-motion waveforms for earthquake scenarios. Among five available modeling methods in the v16.5 platform, we used the Song Model. Approximately 50 earthquake scenarios each were simulated for M 6.0, 6.5, and 7.0 events. Representative metrics such as peak ground acceleration (PGA) and peak ground velocity (PGV) were obtained from the synthetic waveforms that were simulated before and after the consideration of site effects (VS30). They were then empirically converted to distribution of instrumental intensity. The intensity that considers the site effects is amplified at low rather than high VS30 zones.
        4,000원
        16.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 국내에서 발생한 경주지진 및 포항지진이 도심지 및 원자력발전소 주변에서 발생함에 따라 인근 주요 구조시스 템에 피해를 발생시킨 바 있다. 이에 따라, 본 연구는 원전 배관계통의 지진 거동 특성을 실험 및 해석적으로 규명하고, 이를 바탕으로 내진성능을 평가하는 연구를 수행하는 것을 목적으로 한다. 이를 위하여, 원전 배관계통을 대상으로 한 진동대 시험 결과를 바탕으로 배관 수치해석 모델을 수립하고 이를 시험 결과를 통하여 검증한다. 또한, 이러한 검증된 수치해석모델을 기반으로 배관계통의 내진성능을 평가한다. 수치해석 모델 검증 결과, 수립된 수치모델의 고유진동수, 감쇠비 및 변위 응답이 진동 대시험 결과와 유사한 것으로 나타났다. 이러한 검증된 수치모델을 바탕으로 평가된 내진성능 값은 기존 원전 배관의 내진성능 값의 범위와 비교적 유사한 값으로 평가되었다. 이는 설계기준지진을 크게 상회하는 값이지만, 원전 주요 기기 임을 감안할 때 추가적인 내진성능 상향이 확보되면 원전 지진 안전성 향상에 많은 기여를 할 수 있을 것으로 판단된다. 본 연구의 결과는 추후 원전 배관계통 내진성능평가를 위한 정량적인 자료로 활용이 가능할 것으로 판단된다.
        4,000원
        17.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        액체저장탱크의 지진 거동은 유체-구조물 상호작용에 의해 복잡하게 나타나므로, 이 시스템의 지진응답과 피해를 정확하게 예측 하기 위해서는 이를 엄밀히 고려하여야 한다. 이 연구에서는 유체-구조물 상호작용을 엄밀히 고려하여 양방향 수평 지반운동이 작용 하는 직사각형 액체저장탱크의 지진응답 해석을 수행하고 그 응답 특성을 분석하고자 한다. 이를 위해 지진하중 작용 시 발생하는 유체 동수압을 유한요소 기법을 사용하여 산정하고, 이 동수압을 구조물의 유한 요소에 작용하여 전체 시스템의 동적 거동을 모사한다. 예제 직사각형 액체저장탱크의 지진응답 해석을 통하여 대상 시스템의 동적 거동은 양방향 수평 지반운동이 작용하는 방위각에 의해 유의미한 영향을 받음을 확인할 수 있다. 그러므로 직사각형 액체저장탱크의 내진설계를 수행하거나 내진성능을 검토할 때는 이러한 특성을 고려하여야 할 것이다.
        4,000원
        18.
        2020.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.
        4,000원
        19.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the occurrence frequency of earthquake has increased in Korea, and many cultural assets have been damaged. Cheomseongdae is a valuable cultural assets that must be preserved historically and culturally. But, the masonry structure such as Chemseongdae is vulnerable to lateral forces. Therefore, in this study, structural modeling and dynamic analysis are performed to reflect the ground state and structural form of Cheomseongdae. Also, discrete element analysis technique is applied and dynamic behavior characteristics are analyzed according to earthquake load. For this purpose, displacements and stresses according to locations are reviewed and then swelling and distortion are analyzed.
        4,000원
        20.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.
        4,000원
        1 2 3 4 5