Beam hardening artifact can be caused by metal material when performing PET exam. Therefore, we studied a solution decreasing artifact caused by metallic dental implant. The higher voltage, the lesser artifact in CT exam. But Higher voltage dosen't affect PET exam. The thicker silicon the lesser artifact in CT and PET exam. Both methods make less artifact in CT and PET exam. But considering safety of patient, the way of using silicon is better.
This study analyzed the total number of 19,636 patients and radiation technologists, 11,433 of male and 8,203 of female by examined body parts, age, types of detectors, the using contrast enhancement and working condition of the technologists, regular staffs or rotation-duty staffs, based on the K-DOS program distributed by FDA with the DLP value of diagnostic evaluation. The result shows that the effective radiation dose was 0.7mSv~41.7mSv for each region and male patients had more radiation exposure than females. And the amount of exposure was also affected by the types and the method of detectors. Furthermore, the regular staffs took the role of helping the patient to get reduced amount of radiation exposure than rotation duty-staffs. Computed tomography (CT) use has increased dramatically over the past several decades. In this reason, to support the patients and the workers’ health in the field, the hospitals should apply specialized regular working radiation technologist system and manufacturing companies of those CTs should develop low medical radiation exposure devices.
The importance of managing the exposure to radiation for radiological technologist is becoming more conspicuous as modern medical care increases the number of hospital exams involving radiation and as work of radiological technologists expand and increase in areas using advanced medical equipment for diagnosis and treatment purposes involving radiation. Measurements for individual exposure dose to radiation can differ according to the equipment and facilities in the work environment and the average number of exposures an individual is involved in. Therefore, systematic and reasonable controls on the exposure dose to radiation can be attained from core data. Shallow dose/Deep dose measurements were taken according to the year of the measurement, the technologist’s occupation post, gender, department, and age over a five year period from January 1, 2003 to December 31, 2007 using a sample of radiological technologists from ten general hospitals throughout S. Korea. When comparing individual exposure dose of each radiological technologist, there was no significant difference in the mean exposure dose according to the year the measurement was taken (p>0.05). Mean exposure dose for Deep/Shallow according to gender showed that men received significantly higher exposure dose than women (p<0.001). Mean exposure dose for Deep/Shallow according to age showed an increase in exposure dose as age decreases, however, it was not statistically significant (p>0.05). According to occupation post, technologists working in nuclear medicine received significantly higher dose than other occupation posts (p<0.001). The results of individual exposure dose were under the dose limits in accordance to all nuclear regulations. Furthermore, since stochastic effects may occur with long-term exposure to low level radiation, individual exposure dose data was thoroughly managed and the principle of As Low as Reasonably Achievable (ALARA) was implemented when establishing the design of this study.
Manchester system 타입의 장착기중 상, 하부에 차폐체가 장착되어 있는 Henschke 장착기를 이용하여 자궁암 근접치료시 자궁 및 주변장기의 선량분포를 평가하기 위하여 치료계획수립에 사용되는 실용프로그램 결과와 몬테칼로 모의계산 결과를 비교하였다. 또한 자궁 및 주변 정상조직이 받은 선량을 계산하기 위해 ORNL(Oak Ridge National Laboratory)에서 수립한 여성의 MIRD (Medical Internal Radiati
The National Health Insurance Act, the Industrial Health Act and the School Health Act require chest radiography at least once a year. In chest radiographic examination, most group examinations use indirect X-ray primarily aiming at diagnosing diseases and enhancing people's health. This study purposed to minimize radiation exposure dose by comparing it between direct and indirect chest X-ray studies. According to the result of comparing and analyzing radiation exposure dose, the average incident dose and penetrating dose were 0.929μGy and 0.179μGy respectively in direct chest X-ray and 6.807μGy and 1.337μGy in indirect chest X-ray In order to minimize radiation exposure dose at direct and indirect chest X-ray, indirect X-ray should be excluded from group examination if possible. Moreover, it is necessary to control the quality of equipment (Q/A & Q/C) systematically and to avoid using unqualified equipment in order to reduce radiation exposure dose.
한국원자력환경공단은 처분시설 내 1단계 인수·저장구역의 인수검사 공간 및 드럼 취급 공간 부족에 대한 문제를 해결하기 위하여 방폐물검사건물을 건설하여 저장·처리능력을 확충할 예정이다. 본 연구에서는 MCNP 코드를 이용하여 방폐물검사 건물 내 저장구역에서 취급하는 해체 방사성폐기물 대상 신형처분용기를 대상으로 작업종사자의 피폭선량을 평가하였다. 평가결과, 시설 내 저장 가능한 최대 용기 개수(304개)와 방사선작업에 대한 연간 예상 작업시간(약 306시간)에 대하여 연간 집단선량은 총 84.8 man-mSv로 계산되었다. 시설 내 총 304개의 신형처분용기(소형/중형 타입)가 저장 완료된 시점에서 인수검사, 처분검사를 위한 작업종사자의 투입인력은 총 25명, 작업종사자 당 예상피폭선량은 연평균 3.39 mSv로 산출 되었다. 소형용기 취급 시 작업종사자의 고방사선량 작업에 따른 작업효율과 방사선적 안전성 확보를 위해서는 콘크리트 라이너의 두께를 증가시키는 추가적인 차폐가 필요할 것으로 평가되었다. 향후 본 연구를 바탕으로 실측기반의 해체폐기 물의 선원항과 특성을 활용하여 방사선작업 당 작업시간 및 투입인력을 산출함으로써 작업종사자의 최적의 방사선작업조건을 도출할 수 있을 것으로 사료된다.
원전 해체 공정 중 다량의 콘크리트 방사성 폐기물의 절단 과정에서 불가피하게 방사성 에어로졸이 생성된다. 방사성 에어 로졸은 인체 호흡기 흡착에 의한 내부피폭을 유발하기 때문에 작업자의 방사선 방호를 위한 내부피폭평가가 필수적으로 시행되어야 한다. 그러나 실제 작업환경의 에어로졸 특성값을 사용하기에는 선행 연구가 미비하며 콘크리트에 포함된 방사성 핵종의 수가 많기 때문에 정확한 작업자 내부피폭평가를 위해서는 상당한 시간과 인력이 필요하다. 따라서, 본 연구에서는 사전 연구된 콘크리트 에어로졸 특성값을 활용하여 원전 해체 전 절단 작업자의 내부 피폭량을 빠르게 예측할 수 있는 새로운 방법론을 제시하고자 한다. 본 연구팀은 콘크리트 절단 시 발생하는 사전 연구에서 발표된 에어로졸의 수농도 크기 분포데이터를 뉴턴-랩슨법을 이용하여 피폭평가 계산에 필요한 방사능중앙 공기중역학직경(Activity Median Aerodynamic Diameter)값으로 변환하였다. 또한 원전 정지 10년 후 비방사능 값을 ORIGEN code로 계산하였으며, 최종적으로 핵종별 예 탁유효선량을 IMBA 프로그램을 이용하여 계산하였다. 핵종별 예탁유효선량값을 비교한 결과 152Eu에 의한 최대 예탁유효선량은 전체 선량값의 83.09%를 차지하고, 152Eu를 포함한 상위 5개 원소(152Eu, 154Eu, 60Co, 239Pu, 55Fe)의 경우 최대 99.63%를 차지함을 확인하였다. 따라서 원전 해체 전 콘크리트의 구성 원소 중 상위 5개 주요 원소 측정을 먼저 시행한다면 더 빠르고 원활한 방사능 피폭관리 및 해체 작업 안전성 평가가 가능할 것으로 판단된다.
위장조영검사는 X선을 사용하는 검사로 검사 부위 외의 다른 장기의 피폭이 발생한다. 위장조영검사에 서 갑상선, 수정체, 유방, 생식선 등 생물학적으로 방사선감수성이 상대적으로 높은 표적장기가 주변에 분포되어있기 때문에 방사선 피폭에 대한 방어를 하는 것이 중요하다. 장기별 측정 깊이의 선택이 가능한 전신 팬톰을 제작하고 안구, 갑상선, 유방, 생식선의 방사선 피폭선량을 측정하였다. 투시만 시행하였을 경우 수정체, 갑상선, 유방, 생식선의 평균 피폭선량의 감소는 62.2%로 나타났고, 투시와 Spot 촬영을 동시에 시행하였을 경우 수정체, 갑상선, 유방, 생식선의 평균 피폭선량의 감소는 59.0%로 나타났다. 따라서 위장조영검사 시 수정체, 갑상선, 유방, 생식선의 차폐가 이들의 피폭선량 감소에 효과가 있었다는 것을 확인할 수 있었다. 제작한 인체 팬톰은 인체에 위치한 장기에 해당하는 높이를 조절할 수 있기 때문에 심부선량 측정에 사용될 수 있을 것이다.
본 연구는 고용량 131I 치료 후 방사선원이 된 퇴원 환자로부터 나오는 방사선 피폭에 관해 외부 선량률 을 측정하고, 그에 따른 피폭선량을 예측하는 것이 목적이다. 200 mCi 이상 고용량 131I 치료를 받은 30명의 환자에서 구리링 3개를 이용하여 환자로부터 거리 및 방위각에 따른 선량평가를 시행하였다. 정확한 방사 선 계측을 위하여 GM 계측기를 이용하여 2명의 측정자가 방위각 8 포인트와 거리 변화를 주며 계측하였 다. 측정값을 기반으로 3가지 예측 시뮬레이션을 설정하여 불특정 다수 일반인에 대한 피폭선량을 계산하 였다. 1m 높이에서 방위각에 따른 외부 선량률이 가장 높은 부위는 0도이다. 거리에 따른 선량률은 거리별 방위각의 선량률 평균값을 사용하였다. 거리에 따른 외부 선량률의 최고치는 50, 100, 150 cm에서 각각 214 ± 16.5, 59 ± 9.1 μSv/h, 38 ± 5.8 μSv/h 이다. 고용량 131I 치료 환자가 대중교통을 이용해서 5시간 이동할 때 반경 50 cm 지점의 옆좌석에 안은 불특정 일반인이 받을 수 있는 피폭선량은 1.14 mSv이다. 소변 통 (urin bag)을 착용한 퇴원환자로부터 100 cm 거리에서 4일 동안 간병인이 받을 수 있는 최대 피폭선량은 6.5 mSv이다. 퇴원 환자 귀가로 인해 7일 동안 150 cm 거리에서 보호자가 받을 수 있는 최대 피폭선량은 1.08 mSv이다. 개발된 예측 모델링으로 불특정 131I 치료 환자의 주변 일반인에게 적용하였을 때 연간 선량 한도 를 단시간에 초과하는 수준이었다. 따라서 본 연구를 통해 현행 고용량 131I 치료 환자의 퇴원 후 주변의 일반인의 방호체계의 합리적인 가이드라인을 제시하는 데 도움을 줄 수 있을 것으로 사료된다.
의료기관에서는 환자의 진단 및 치료를 위해 방사선발생장치 및 방사성동위원소를 사용하고 있다. 환자 이송원은 환자이송을 위해 불가피하게 방사선 관리구역에 출입하거나, 동위원소가 투여된 환자를 근거리 에서 이송하는 등 일반인과 비교했을 때, 방사선에 노출될 확률이 높은 환경에서 업무를 수행한다. 따라서 환자이송원의 피폭 정도를 알아보고자 연구를 진행했다. 인천 A 종합병원에서 근무하고 있는 12명의 환자 이송원을 대상으로 2019년 4월 1일부터 4월 30일까지 한 달 동안 선량계를 가슴에 패용하고, 누적된 선량을 측정했다. 사용된 선량계는 광자극발광선량계(OSLD), 선량판독은 OSLD Microstar Reading System을 사용했다. 한 달 동안 누적선량 측정 결과 심부선량은 평균 0.13 mSv, 표층선량은 평균 0.13 mSv로 측정되었고, 한 달 동안 누적된 선량에 12를 곱해 일 년 동안 업무를 수행할 시 받게 될 누적선량 예상치를 추정한 결과 심부선량은 평균 1.52 mSv, 표층선량은 평균 1.51 mSv로 나타났다. 환자이송원의 수시출입자 분류를 통해 피폭선량을 측정, 관리 하고, 교육훈련을 통해 방사선에 대한 방호지식을 높이며 건강진단을 통해 방사선장해 발생을 방지하기 위한 노력이 필요하다.
현대의학에서 핵의학 검사는 암의 진단에 많이 이용된다. 방사선 작업종사자가 개봉 방사성동위원소를 사용할 때 방사선 피폭에 노출된다. 환자에게 방사성동위원소를 투여할 때 방사선 작업종사자가 받는 피폭 선량을 감소시키는 방법을 연구하였다. 납 차폐소재를 이용하여 연당량 0.2 mmPb, 300 mm × 500 mm × 15 0 mm 크기로 차폐기구를 제작하였다. 차폐기구의 사용 유무, 실린더를 차폐기구와 함께 사용하였을 때 3가지 실험방법으로 갑상선, 가슴, 생식선의 흡수선량을 나노닷으로 측정하였다. 생식선 위치에서 0.908 mG y가 측정되었고, 실린더와 제작한 차폐기구를 함께 사용하였을 때 20.8% 감소한 0.719 mGy로 가장 큰 피폭 저감이 나타났다. 방사선 작업종사자가 받는 1년 예상 유효선량은 1.223 mSv로 가슴부위가 가장 높았으며 실린더와 차폐기구를 함께 사용하였을 때 0.994 mSv로 감소하였다. 방사성동위원소를 환자에게 투여할 때 제작된 차폐기구만을 사용하여도 방사선 작업종사자의 피폭을 감소시킬 수 있음을 확인하였다.
본 연구는 다양한 종류의 차폐체가 가진 차폐 효율을 확인하고, 인체모형 팬텀을 활용해 깊이에 따른 장기별 선량을 측정한 것이다. 개인방사선량측정기를 이용한 차폐체 차폐효율 측정 결과 다양한 차폐체 중 나노텅스텐으로 구성된 1.1 mm RNS-TX가 가장 높은 차폐 효율을 보였고, 0.2 mm 납 차폐체가 가장 낮은 차폐 효율을 보였다. 99mTc 30 mCi를 120분 동안 팬텀에 노출시킨 뒤 장기가 받은 선량 측정 결과. 방사선 방호복을 착용하지 않은 경우, 0.25 mm Pb, 0.5 mm Pb 방호복을 착용한 경우, 장기의 평균 선량은 각각 20. 53 mSv, 8.75 mSv, 6.03 mSv로 나타났다. 131I 2 mCi를 120분 동안 팬텀에 노출시킨 뒤 장기가 받은 선량 측정 결과, 방사선 방호복을 착용하지 않은 경우, 0.25 mm Pb, 0.5 mm Pb 방호복을 착용한 경우, 장기의 평균 선량은 각각 7.71 mSv, 4.88 mSv, 2.79 mSv로 나타났다. 18F 5 mCi를 120분 동안 팬텀에 노출 시킨 뒤 장기가 받은 선량 측정 결과. 방사선 방호복을 착용하지 않은 경우, 0.25 mm Pb, 0.5 mm Pb 방호복을 착용 한 경우, 장기의 평균 선량은 각각 16.39 mSv, 15.84 mSv, 12.52 mSv로 나타났다. 핵의학 작업종사자의 피폭선량이 한도를 넘지 않는다고 하더라도, 병원 내 타 직군 종사자와 비교 했을 때, 상대적으로 높은 피폭 선량을 보이므로 가볍고 차폐효율이 좋은 차폐물질로 개발된 방사선방호복 착용, 순환 업무, 업무 분담, 오토분주기와 같은 대체 장비 도입 등을 통해 핵의학 작업종사자의 선량을 줄이고, 관리할 수 있어야 한다.
흉부 및 복부 CT 검사 시 산란선에 의한 안구와 갑상선의 방사선 피폭선량을 측정하고, 피폭선량의 감소를 위해 차폐체를 사용함으로써 방사선 피폭 정도를 조사하였다. 임상에서 사용되는 흉부 및 복부 CT 검사 프로토콜을 적용하여 안구와 갑상선의 차폐체 사용 전과 후의 선량을 측정하여 비교하였다. 안구와 갑상선 의 표면선량은 OSLD를 사용하여 측정하였다. 산란선을 차폐하기 위해 바륨, 텅스텐 시트와 고글과 목차 폐체를 사용하였다. 흉부 CT 스캔 시 차폐를 하지 않고 스캔한 안구는 3.01 mSv,갑상선은 6.21 mSv로 측정 되었고 복부 CT 스캔 시 차폐를 하지 않고 스캔한 안구는 0.55 mSv,갑상선은 3.22 mSv를 나타내었다. 바륨과 텅스텐 시트는 흉부 CT 검사 시 안구와 갑상선의 차폐율이 11~13%이었고, 복부 CT 검사 시에는 34~49%까지 방사선 피폭의 저감 효과가 있었다. 흉부 및 복부 CT 검사 시 방사선 피폭 정도가 상당하기 때문에 검사가 반복, 지속적으로 이루어진다면 방사선 피폭으로 인해 갑상선 암, 백내장 등 방사선 위해가 발생할 가능성이 있어 검사 시 차폐체를 사용하는 것이 요구된다.
원전 해체 공정 중 절단 및 용융작업에서 발생되는 방사성 에어로졸은 작업종사자의 호흡을 통해 내부 피폭을 유발하게 된다. 이에 따라 해체 중 방사성 에어로졸로 인한 작업종사자의 내부피폭 평가가 필요한 실정이다. 정확한 내부피폭평가를 위해서는 작업종사자의 작업환경 실측값이 필요하지만 실측에 어려움이 있을 시에는 국제방사선방호위원회(ICRP)에서 제시하는 섭취량 분율 및 입자 크기 등의 권고 값을 통해 내부피폭선량을 추정할 수 있다. 본 논문에서는 입자 크기의 선정은 ICRP에서 권고하는 작업종사자의 고려 입자 크기인 5 μm을 적용하였다. 발생량의 경우, 불가리아의 Kozloduy 부지 내의 용융시설에서 발생 된 에어로졸의 포집량 데이터를 이용하여 섭취량을 산정하였다. 또한 이를 이용해 작업종사자의 체내 및 배설물에서의 방사능 수치를 계산하고 BiDAS 전산코드를 통해 내부피폭 평가를 수행하였다. Type M이 0.0341 mSv, Type S가 0.0909 mSv로 두 흡수 형태 각각 국내 연간 선량 한도의 0.17%, 0.45% 수준을 나타내었다.
의료용 사이크로트론은 방사성의약품을 생산하기 위해 양성자를 고속으로 가속시켜 핵반응을 일으키게 되며, 핵반응을 통해 불필요한 중성자가 발생하게 된다. 중성자는 사이클로트론의 부품에 방사화를 일으키는 원인으로 종사자들의 피폭의 원인이 된다. 이에 본 연구에서는 핵반응이 일어나는 Targetry 부품들인 Aluminum body, Silver body, Havar foil의 방사화 정도를 분석하여 피폭선량을 알아보고자 하였다. 실험결과 Aluminum body와 Silver body는 방사화된 핵종들의 에너지가 작고, 반감기가 짧아 종사들에게 미치는 선량이 미미하였으며, 재사용하는데 문제가 없었다. 하지만 Havar foil의 경우 방사화된 핵종들의 에너지가 높고 반감기가 길어 종사자들에게 미치는 영향이 매우 높았으며, 방사성폐기물로써 특별한 관리가 필용한 것으로 나타났다.
대한민국 첫 상업원전인 고리1호기는 40년간의 성공적인 운전을 끝내고 2017년 6월 18일 영구정지 되었다. 고리1호기는 본격적인 해체에 앞서 터빈건물에 폐기물처리시설 건설을 계획하고 있다. 각종 방사성폐기물은 폐기물처리시설에서 제염, 해체, 절단, 용융되어 자체처분 되거나 방사성폐기물 처분장으로 보내 진다. 해체폐기물 중 대형금속방사성폐기물은 주로 1차 계통측 기기들로 높은 방사능을 띄고 있어 해체활동 중 작업자의 피폭관리가 필요하다. 본 논문에서는 대형금속방사성폐기물 중 크기가 가장 크고 형상이 복잡한 증기발생기를 선정하여 RESRAD-RECYCLE 코드를 이용하여 작업자 피폭선량을 평가하고 저감화 방안을 수립 하고자 한다.
본 연구는 치과병원에 내원 환자를 대상으로 방사선 검사 시 방사선피폭 인지도에 대한 관련요인을 분석하여 방사선피폭 인식의 변화를 위한 교육 자료를 만드는데 기초자료를 제공하기 위해 시도하였다. 방사선 장치 중 가장 방사선 피폭을 가장 많이 받는 검사에 대해서는 전체 65.5%로 CT가 가장 높았으며, 방사선 검사 시 피폭에 가장 민감한 부위에 대해서는 생식선 56.1% 가장 많았고, 방사선에 대한 정보 파악은 전체 26.3%가 TV나 신문을 통해 습득하는 것이 가장 많았다. 방사선 인식도, 방사선 유해성, 방사선 검사 시 심리상태, 방사선 피폭방지, 방사선 필요성에 대해서는 성 별간 남자가 더 높게 나타났으며, 통계학적으로는 유의한 차이가 있었다. 본 연구를 통해서 환자들로 하여금 방사선피폭에 대하여 올바르게 인식을 할 수 있도록 교육프로그램의 개발이 시급하며, 방사선사들에게는 환자의 피폭선량을 경감을 위한 세심한 배려가 필요하다고 하겠다. 또한 환자들은 방사선에 대해서 올바르게 인식하는 것이 촬영 시 불안감과 방사선피폭을 줄일 수 있을 것이다.
중재적 시술은 매우 낮은 관전류를 사용함에도 불구하고 장시간 방사선 피폭으로 인해 시술자뿐만 아니 라 환자의 방사선 노출에 의한 위험도가 크다. 이에 본 연구의 목적은 뇌혈관 중재적 시술 시 시술자가 받는 선량을 측정하고 의료 방사선으로부터의 노출을 효율적으로 차단할 수 있는 차폐물질과 차폐방식을 찾아 시술자가 받는 피폭선량을 화질에 영향을 미치지 않는 범위 내에서 최소화 할 수 있는 방법을 찾는 것이다. 결과적으로, Nano Tungsten 물질로 새롭게 고안한 차폐방식을 사용하였을 때 시술자 측에서 평균 7.95% 선 량이 감소되는 것을 확인할 수 있었다. 또한, 본 연구에서 고안한 차폐체를 사용하였을 때 PSNR의 결과는 38.44 dB로 측정되었으며 이는 Nano Tungsten이 영상의 화질에 큰 영향을 끼치지 않는 것으로 확인할 수 있 었다. 결론적으로, Nano Tungsten 차폐물질은 화질에 영향을 미치지 않는 범위 내에서 시술자뿐만 아니라 환 자의 선량을 상당히 줄일 수 있음을 알 수 있었다. 위의 물질을 사용할 경우 최근 차폐물질의 이슈로 부각되 고 있는 인체 및 환경의 유해성 및 경제성에 관련한 문제점들을 해결할 수 있을 것으로 기대된다.