Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.
본 논문에서는 볼트로 체결된 구조체에 대하여 초기 볼트풀림 상태에서의 볼트 체결력 예측 합성곱 신경망 훈련 방법을 제시한다. 8개의 볼트의 체결력이 변경된 상태에서 계산한 주파수응답들을 완전 체결된 상태의 초기 모델과의 크기 및 모양 유사성을 표현하는 유사성 지도로 생성한다. 주파수응답 데이터들의 생성에는 크리로프 부공간법 기반의 모델차수축소법을 적용하여 효율적인 방법으 로 수행할 수 있도록 한다. 합성곱 신경망 모델은 회귀 출력 계층을 사용하여 볼트의 체결력을 예측하도록 하였으며, 훈련 데이터의 개 수와 합성곱 신경망 계층의 개수를 다르게 준비하여 훈련시킨 네트워크들을 비교하여 그 성능을 평가하였다. 주파수응답에서 파생되 는 유사성 지도를 입력 데이터로 사용하여 초기 볼트풀림 영역에서 볼트 체결력의 진단 가능성과 유효성을 제시하였다.
본 연구는 무대재배 복숭아 ‘미황’을 대상으로 성숙기간 중 RGB 영상을 취득한 후 다양한 품질 지표를 측정하고 이를 딥 러닝 기술에 적용하여 복숭아 과실 숙도 분류의 가능성을 탐 색하고자 실시하였다. 취득 영상 730개의 데이터를 training 과 validation에 사용하였고, 170개는 최종 테스트 이미지로 사용하였다. 본 연구에서는 딥러닝을 활용한 성숙도 자동 분 류를 위하여 조사된 품질 지표 중 경도, Hue 값, a*값을 최종 선 발하여 이미지를 수동으로 미성숙(immature), 성숙(mature), 과숙(over mature)으로 분류하였다. 이미지 자동 분류는 CNN (Convolutional Neural Networks, 컨볼루션 신경망) 모델 중 에서 이미지 분류 및 탐지에서 우수한 성능을 보이고 있는 VGG16, GoogLeNet의 InceptionV3 두 종류의 모델을 사용 하여 복숭아 품질 지표 값의 분류 이미지별 성능을 측정하였 다. 딥러닝을 통한 성숙도 이미지 분석 결과, VGG16과 InceptionV3 모델에서 Hue_left 특성이 각각 87.1%, 83.6% 의 성능(F1 기준)을 나타냈고, 그에 비해 Firmness 특성이 각각 72.2%, 76.9%를 나타냈고, Loss율이 각각 54.3%, 62.1% 로 Firmness를 기준으로 한 성숙도 분류는 적용성이 낮음을 확인하였다. 추후에 더 많은 종류의 이미지와 다양한 품질 지 표를 가지고 학습이 진행된다면 이전 연구보다 향상된 정확도 와 세밀한 성숙도 판별이 가능할 것으로 판단되었다.
Visual inspection methods have limitations, such as reflecting the subjective opinions of workers. Moreover, additional equipment is required when inspecting the high-rise buildings because the height is limited during the inspection. Various methods have been studied to detect concrete cracks due to the disadvantage of existing visual inspection. In this study, a crack detection technology was proposed, and the technology was objectively and accurately through AI. In this study, an efficient method was proposed that automatically detects concrete cracks by using a Convolutional Neural Network(CNN) with the Orthomosaic image, modeled with the help of UAV. The concrete cracks were predicted by three different CNN models: AlexNet, ResNet50, and ResNeXt. The models were verified by accuracy, recall, and F1 Score. The ResNeXt model had the high performance among the three models. Also, this study confirmed the reliability of the model designed by applying it to the experiment.
Deep convolutional network is a deep learning approach to optimize image recognition. This study aimed to apply DCNN to the reading of mandibular cortical thinning in digital panoramic radiographs. Digital panoramic radiographs of 1,268 female dental patients (age 45.2 ± 21.1yrs) were used in the reading of the mandibular cortical bone by two maxillofacial radiologists. Among the subjects, 535 normal subject’s panoramic radiographs (age 28.6 ±7.4 yrs) and 533 those of osteoporosis pationts (age 72.1 ± 8.7 yrs) with mandibular cortical thinning were used for training DCNN. In the testing of mandibular cortical thinning, 100 panoramic radiographs of normal subjects (age 26.6 ± 4.5 yrs) and 100 mandibular cortical thinning (age 72.5 ± 7.2 yrs) were used. The sensitive area of DCNN to mandibular cortical thinning was investigated by occluding analysis. The readings of DCNN were compared by two maxillofacial radiologists. DCNN showed 97.5% accuracy, 96% sensitivity, and 99% specificity in reading mandibular cortical thinning. DCNN was sensitively responded on the cancellous and cortical bone of the mandibular inferior area. DCNN was effective in diagnosing mandibular cortical thinning.
Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.
작물의 생체중을 추정하기 위해 다양한 연구가 시도되었지만, 이미지를 활용하여 생체중을 추정한 예는 없었다. 최근 합성곱 신경망을 사용한 이미지 처리 연구가 늘고 있으며, 합성곱 신경망은 미가공 데이터를 그대로 사용할 수 있다. 본 연구에서는 합성곱 신경망을 이용하여 미가공 데이터 상태인 특정 시점의 파프리카 이미지를 입력으로 작물의 생체중을 추정하도록 학습하였다. 실험은 파프리카(Capsicum annuum L.)를 재배하는 온실에서 수행하였다. 합성곱 신경망의 출력값인 생체중은 파괴조사를 통해 수집한 데이터를 기반으로 회귀 분석하였다. 학습된 합성곱 신경망의 결정 계수(R2)의 최고값은 0.95로 나타났다. 생체중 추정값은 실제 측정값과 매우 유사한 경향성을 보여주었다.
This study was conducted as part of a series of studies to introduce the Convolutional Neural Network(CNN) into the diagnostic field of osteoporosis. The purpose of this study was to compare the results when testing Digital Radiography(DR) and Computed Radiography(CR) panoramic radiographs by CNN that were trained by DR panoramic radiographs. The digital panoramic radiographs of females who visited for the purpose of diagnosis and treatment at Chonnam National University Dental Hospital were taken. Two Oral and Maxillofacial Radiologists were selected for the study to compare the panoramic radiographs with normal and osteoporosis images. Among them, 1068 panoramic radiographs of females{Mean [± standard deviation] age: 49.19 ± 21.91 years} obtained by DR method were used for training of CNN. 200 panoramic radiographs of females{Mean [± standard deviation] age: 63.95 ± 6.45 years} obtained by DR method and 202 panoramic radiographs of females{Mean [± standard deviation] age: 62.00 ± 6.86 years} obtained by CR method were used for testing of CNN. When the DR panoramic radiographs were tested, the Accuracy was 92.5%. When the CR panoramic radiographs were tested, the Accuracy was 76.2%. It can be seen that the CNN trained by DR panoramic radiographs is suitable to be tested with the same DR panoramic radiographs.
화재의 초기 검출은 인명과 재화의 손실을 최소화하기 위한 중요한 요소이다. 불꽃과 연기를 신속하면서 동시에 검출해야 하며 이를 위해 영상 기반의 화재 검출에 관한 연구가 다양하게 진행되고 있다. 기존의 화재 검출은 불꽃과 연기의 특징을 추출하기 위해 여러 알고리즘을 거쳐서 화재의 검출 유무를 판단하므로 연산량이 많이 소모되었으나, 딥러닝 알고리즘인 합성곱 신경망을 이용 하면 별도의 과정이 생략되므로 신속하게 검출할 수 있다. 본 논문에서는 선박 기관실에서 화재 영상을 녹화한 데이터로 실험을 수행 하였다. 불꽃과 연기의 특징을 외각 상자로 추출한 후 합성곱 신경망 중 하나인 욜로(YOLO)를 이용하여 학습하고 결과를 테스트하였 다. 실험 결과를 검출률, 오검출률, 정확도로 평가하였으며 불꽃은 0.994, 0.011, 0.998, 연기는 0.978, 0.021, 0.978을 나타내었고, 연산시간 은 0.009s를 소모됨을 확인하였다.
This study aimed to test a convolutional neural network (CNN) in two different settings of training and testing data. Panoramic radiographs were selected from 1170 female dental patients (mean age 49.19 ± 21.91 yr). The cortical bone of the mandible inferior border was evaluated for osteoporosis or normal condition on the panoramic radiographs. Among them, 586 patients (mean age 27.46 ± 6.73 yr) had normal condition, and osteoporosis was interpreted on 584 patients (mean age 71.00 ± 7.64 yr). Among them, one data set of 569 normal patients (mean age 26.61 ± 4.60 yr) and 502 osteoporosis patients (mean age 72.37 ± 7.10 yr) was used for training CNN, and the other data set of 17 normal patients (mean age 55.94 ± 4.0 yr) and 82 osteoporosis patients (mean age 62.60 ± 5.00 yr) for testing CNN in the first experiment, while the latter was used for training CNN and the former for testing CNN in the second experiment. The error rate was 15.15% in the first experiment and 5.14% in the second experiment. This study suggests that age-matched training data make more accurate testing results.
픽셀 아트는 낮은 해상도와 제한된 색 팔레트를 가지고 영상을 표현한다. 픽셀 아트는 낮은 연 산 성능과 적은 저장 공간을 가지는 초기 컴퓨터 게임에서 주로 사용되었다. 현대에 이르러, 픽셀 아트는 예술이나 퍼즐, 게임과 같은 다양한 분야에서 찾아볼 수 있게 되었다.
본 논문에서는 게임 캐릭터 영상을 입력으로 받는 픽셀 아트 생성 모델을 제안한다. 기존 방법 과는 달리, 합성곱 신경망(CNN:Convolutional-Neural Network)를 픽셀 아트 생성 목적에 맞게 변형하여 이를 이용하는 방법을 제시한다. 기존의 합성곱 연산 후에 upsampling 과정을 추가하여 픽셀 아트가 생성될 수 있도록 하였다. 네트워크는 ground truth와 생성된 픽셀 아트와의 평균 오차 제곱(MSE:Mean Squared Error)을 최소화해나가며 학습을 수행한다.
Ground truth는 실제 아티스트가 생성하도록 하였고, 이미지 회전과 반전 기법을 이용하여 augumentation을 수행하였다. 생성된 데이터 집합은 학습, 검증, 시험 데이터로 나누었다. 이러한 데이터 집합을 기반으로 감독 학습을 실시하여 픽셀 아트 생성 네트워크를 학습하였다. 학습 모델의 학습 과정과 학습 정확도를 제시하고, 시험 데이터 뿐만 아니라 다양한 영상에 대한 픽셀 아트 결과도 함께 제시한다.
본 연구에서는 아스팔트 콘크리트 도로포장의 표면균열 검출을 위해 합성곱 신경망을 이용하였다. 합성곱 신경망의 학습에 사용되는 표면균열 이미지 데이터의 양에 따른 합성곱 신경망의 성능향상 정도를 평가하였다. 사용된 합성곱 신경망의 구조는 5개의 층으로 구성되 어있으며, 3x3 크기의 convolution filter와 2x2 크기의 pooling kernel을 사용하였다. 합성곱 신경망의 학습을 위해서 도로노면 조사 장비를 통해 구축된 국내 도로포장 표면균열 이미지를 활용하였다. 표면균열 이미지 데이터를 학습한 합성곱 신경망 모델의 표면균열 검출 정확도, 정밀도, 재현율, 미검출율, 과검출율을 평가하였다. 가장 많은 양의 데이터를 학습한 합성곱 신경망 모델의 표면균열 검출 정확도, 정밀도, 재현율은 96.6% 이상, 미검출율, 과검출율은 3.4% 이하의 성능을 나타내었다.