For safe disposal of radioactive wastes, accurate analysis of nuclear isotopes is important. It is known that there are 14 nuclides that have to identify nuclide-specific concentration levels. 63Ni, one of non-volatile nuclear isotopes which is included in those 14 nuclides, has to follow chemical separation for exact analysis. As various analysis methods were developed, various methods for analyzing 63Ni also emerged. Past method has used measurement specimens of 59Ni, after 59Ni measurement has been done. It used HClO4, known as strong oxidizing agent, to dissolve DMG, an organic substance used to form 59Ni precipitates. Nowadays, we analyze 59Ni and 63Ni simultaneously, which enables short analysis time, without use of HClO4. But high accuracy is just as important as short measurement time and efficiency. So, this paper compare 63Ni specific activity value used new method with the value, past method used, using real sample’s data. As a result, all sample data from new method’s relative 63Ni specific activity is within the uncertainty range of past ones based on past specific activity value. Consistency of new method’s result and past method’s data increased the reliability of the data and accuracy of those methods.
According to the Nuclear Safety and Security Commission (NSSC) Notice No. 2021-26 “Delivery Regulations for the Low- and Intermediate Level Radioactive Waste (LILW)”, the activity of 3H, 14C, 55Fe, 58Co, 60Co, 59Ni, 63Ni, 90Sr, 94Nb, 99Tc, 129I, 137Cs, 144Ce, and gross alpha must be identified. Currently, the scaling factor of the dry active waste (DAW) for LILW is applied as an indirect evaluation method in Korea. The analyses are used the destructive methods and 55Fe, 60Co, 59Ni, 63Ni, 90Sr, 94Nb, 99Tc, and 137Cs, which are classified as nonvolatile nuclides, are separated through sequential separation and then measured by gamma detector, liquid scintillation counter (LSC), alpha/beta total counter (Gas Proportional Counter, GPC), and ICP-MS. We will introduce how to apply the existing nuclide separation method and improve the measurement method to supplement it.
Radioactive wastes that are generated as a result of operating NPPs, contain 63Ni and 59Ni that should be analyzed in accordance with the notice of Nuclear Safety and Security Commission (NSSC) for the acceptance of Korea Radioactive Waste Agency (KORAD). Analyzing 63Ni and 59Ni has few challenges to determine activities of each nuclide in radioactive waste sample that contains both nuclides. As is well known, 63Ni can be analyzed by liquid scintillation counter (LSC) detecting its emitted beta rays, however, beta rays emitted from 59Ni are overlapped on the spectrum. Therefore, to discriminate those two nuclides, spectrum channel should be divided according to its dedicating part of the spectrum. For instance, 59Ni contribute to spectrum channel 30–250, on the other hand, 63Ni contributes to spectrum channel 30–450. In other word, 63Ni solely can be analyzed on the channel from 260 to 450. To analyze both 63Ni and 59Ni using this channel division method, detection efficiency must be measured in advance; efficiency of 63Ni and 59Ni at ch. 30–250, and efficiency of 63Ni at ch. 260–450, then the activity can be calculated using the corresponding efficiency. In this study, for verifying the feasibility of channel division method, 5 simulated samples were prepared with different ratio of 63Ni/59Ni. The ratio varies as 1, 2, 10, 20 and 100 spiking standard source of 63Ni and 59Ni. Each sample was mixed with scintillation cocktail and detected for 90 minutes by LSC (300SL, Hidex) after the stabilization of solutions. As a result, calculated 63Ni activities for all sample were averaged as 97% of spiked activity. However, calculated 59Ni activity were 101%, 103%, 128%, 140%, 260%, respectively. The result indicates that 59Ni cannot be discriminated by channel division method when it exists in the sample with high 63Ni over 10 times then 59Ni such as radioactive waste sample. However, the results also show that the channel division method for analyzing 63Ni activity was successful verifying it can determine the activity of 63Ni regardless of the affect of 59Ni on the spectrum.
원자로의 해체 과정에서 발생되는 방사성 폐기물 내 존재하는 55Fe, 63Ni은 폐기물의 처리방법을 결정하는 데 있어 기초적인 지표로 활용되는 중요한 핵종이다. 하지만 두 핵종은 낮은 방사선량으로 인해 다른 핵종들과의 분리가 필수적이며 또한 시 료 매질에서 완전히 추출할 수 있는 전처리가 선행되어야 한다. 따라서 본 연구는 다양한 매질의 원자로 해체 폐기물에 대한 전처리방법의 적용성을 평가하기 위해 NIST SRM 5종 (1646a, 1944, 8704, 2709a, 1633c)에 대하여 왕수, 불산, 과염소산을 각각 이용하는 습식산화법과 alkali-fusion 전처리법에 따른 Iron와 Nickel의 회수율을 비교하였다. 실험 결과 alkali-fusion 방법은 다양한 매질의 인증표준물질에 대해 Iron 95.3~98.3%, Nickle 86.6~88.1%의 분석 정확도와 2% 이하의 정밀도를 나타냄으로서 해체폐기물 중 55Fe, 63Ni 분석에 가장 최적화된 전처리법으로 판단된다.
추출크로마토그래피법과 액체섬광계수법을 이용하여 고체 시료중의 와 방사능을 측정할 수 있는 분석법을 확립하고 연구로 2호기의 해체시 발생되는 방사화된 콘크리트 폐기물을 분석하였다. 침전법과 추출크로마토그래피법으로 화학분리를 하면, 경우 Fe의 화학적 회수율은 대부분의 시료에서 90%이상이었으나 Ni의 회수율은 43.6과 46.5%를 나타낸 시료가 있으며 나머지는 62% 이상을 나타내었다. Spiked 시료를 이용하여 분리과정과 액체섬광계수법의 과정을 확인한 결과 의 경우는 3.7% 오차내의, 의 경우는 0.7% 오차내의 결과가 얻어졌다. 연구로 2호기의 해체 콘크리트 시료중 방사능은 MDA이하의 값도 있으나 TC3시료의 경우는 362Bq/g의 값이 얻어졌다. 그리고 의 경우는 모든 시료에서 MDA이하 값이 얻어져 이 존재하지 않음을 알 수 있었다. 그리고 콘크리트 벽의 해체시 표면의 시료는 의 방사능이 높다가 표면으로부터 깊은 시료일수록 의 방사능이 급격히 줄어들었다.
방사성 폐기물 핵종 재고량 평가에 필요한 핵종분석을 위하여 다양한 매질의 방사성 폐기물 시료로부터 및 의 분리에 관한 연구가 수행되고 있다. Ni은 음이온교환 수지와 Sr-Spec 추출 크로마토그래피 수지로 Re(의 대용물), Nb, Fe 및 Sr을 차례로 분리하는 과정에서 Ca, Mg, Al, Cr, Ti, Mn, Ce, Na, K 및 Cu와 함께 회수되었다. 본 연구에서는 Ni의 선택적 분리기술을 확립하기 위하여 Ni-Spec 추출 크로마토그래피 및 양이온교환수지법으로 이들의 분리거동을 비교하였다. 또한 Ni의 정제와 기체비례계수법으로 방사능을 측정하기에 적합한 계측시료 준비를 위하여 ammonium 및 tartaric 에서 dimethylglyoxime(DMG)에 의한 Ni의 침전거동을 조사하였다 원자력발전소로부터 채취한 폐이온교환수지 시료 용해용액의 화학조성을 모사하여 만든 모의 폐이온교환수지 용액을 사용하여 Re, Nb, Fe 및 Sr 분리과정을 거쳐 최종적으로 분리한 Ni의 회수율은 이었다. 또한 tartaric 에서 DMG에 의한 Ni의 회수율은 이었다.