Microstructural evolution in the thickness direction of an oxygen free copper processed by accumulative rollbonding (ARB) is investigated by electron back scatter diffraction (EBSD) measurement. For the ARB, two copper alloy sheets 1 mm thick, 30 mm wide and 300 mm long are first degreased and wire-brushed for sound bonding. The sheets are then stacked and roll-bonded by about 50% reduction rolling without lubrication at an ambient temperature. The bonded sheet is then cut to the two pieces of the same dimensions and the same procedure was repeated on the sheets up to eight cycles. The specimen after 1 cycle showed inhomogeneous microstructure in the thickness direction so that the grains near the surface were finer than those near the center. This inhomogeneity decreased with an increasing number of ARB cycles, and the grain sizes of the specimens after 3 cycles were almost identical. In addition, the aspect ratio of the grains decreased with an increasing number of ARB cycles due to the subdivision of the grains by shear deformation. The fraction of grains with high angle grain boundaries also increased with continuing process of the ARB so that it was higher than that of the low angle grain boundaries in specimens after 3 cycles. A discontinuous dynamic recrystallization occurred partially in specimens after 5 cycles.
An ultrafine grained complex aluminum alloy was fabricated by an accumulative roll-bonding (ARB) process using dissimilar aluminum alloys of AA1050 and AA5052 and subsequently annealed. A two-layer stack ARB process was performed up to six cycles without lubricant at an ambient temperature. In the ARB process, the dissimilar aluminum alloys, AA1050 and AA5052, with the same dimensions were stacked on each other after surface treatment, rolled to the thickness reduction of 50%, and then cut in half length by a shearing machine. The same procedure was repeated up to six cycles. A sound complex aluminum alloy sheet was fabricated by the ARB process, and then subsequently annealed for 0.5h at various temperatures ranging from 100 to 350˚C. The tensile strength decreased largely with an increasing annealing temperature, especially at temperatures of 150 to 250˚C. However, above 250˚C it hardly decreased even when the annealing temperature was increased. On the other hand, the total elongation increased greatly above 250˚C. The hardness exhibited inhomogeneous distribution in the thickness direction of the specimens annealed at relatively low temperatures, however it had a homogeneous distribution in specimens annealed at high temperatures.
A Cu-Fe-P copper alloy was processed by accumulative roll-bonding (ARB) for ultra grain refinement and high strengthening. Two 1mm thick copper sheets, 30 mm wide and 300 mm long, were first degreased and wire-brushed for sound bonding. The sheets were then stacked on top of each other and roll-bonded by about 50% reduction rolling without lubrication at ambient temperature. The bonded sheet was then cut into two pieces of the same dimensions and the same procedure was repeated for the sheets up to eight cycles. Microstructural evolution of the copper alloy with the number of the ARB cycles was investigated by optical microscopy (OM), transmission electron microscopy(TEM), and electron back scatter diffraction(EBSD). The grain size decreased gradually with the number of ARB cycles, and was reduced to 290 nm after eight cycles. The boundaries above 60% of ultrafine grains formed exhibited high angle boundaries above 15 degrees. In addition, the average misorientation angle of ultrafine grains was 30 degrees.
An aluminum powder compact consolidated by a powder-in sheath rolling (PSR) method was severely deformed by accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubrication. Optical microscope and transmission electron microscope observations revealed that microstructure of the ARB-processed Al powder compact is inhomogeneous in the thickness direction. The ultra-fine subgrains often reported in the ARB-processed bulky materials were also developed near surface of the Al powder compacts in this study. Tensile strength of the ARB-processed Al powder compact increased at the 1st cycle, but from the 2nd cycle it rather decreased slightly.