검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a new model using artificial neural networks is proposed to improve the thickness error between the plates, which occurs when the rolling conditions change a lot during the thick rolling. The model was developed by using Python, and the input values are the change in the finish rolling temperature between the plates, the change in target tensile strength, the change in target thickness, and the change in rolling force. The new model is 31.76% better than the existing model based on the standard deviation value of the thickness error. This result is expected to reduce quality costs when applied to online models at actual production sites in the future.
        4,000원
        2.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.
        4,000원
        4.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This ammonia prediction study was performed using the time-series artificial neural network model, Long-short term memory (LSTM), after long-term monitoring of ammonia and environmental factors (ventilation rate (V), temperature (T), humidity (RH)) from a slurry finishing pig farm on mechanical ventilation system. The difference with the actual ammonia concentration was compared through prediction of the last three days of the entire breeding period. As a result of the analysis, the model which had a low correlation (ammonia concentration and humidity) was confirmed to have less error values than the models that did not. In addition, the combination of two or more input values [V, RH] and [T, V, RH] showed the lowest error value. In this study, the sustainability period of the model trained by multivariate input values was analyzed for about two days. In addition, [T, V, RH] showed the highest predictive performance with regard to the actual time of the occurrence of peak concentration compared to other models . These results can be useful in providing highly reliable information to livestock farmers regarding the management of concentrations through artificial neural network-based prediction models.
        4,000원
        5.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        광도, 포차와 같은 환경요인과 엽면적 지수와 같은 생육요인은 증산 속도를 변화시키는 중요한 변수이다. 본 연구에서는 Penman-Monteith의 증산 모델과 인공신경망 (ANN)에 학습에 의한 증산속도 추정값을 비교하는 것을 목표로 하였다. 파프리카(Capsicum annuum L. cv. Fiesta)의 증산속도 추정은 로드셀을 이용한 배지의 중량 변화를 통해 계산하였다. 온도, 상대습도, 배지 중량 데이터는 1분 단위로 2개월간 수집하였다. 증산량은 일차식으로는 정확한 추정이 어렵기 때문에, 기존의 Penman-Monteith식에 보정 광도를 사용한 수정식 Shin 등(2014)을 사용하였다. 이와는 별개로 ANN을 사용하여 증산량을 추정 비교하였다. 이를 위하여 광도, 온도, 습도, 엽면적지수, 시간을 사용한 입력층과 5개의 은닉층으로 구성된 ANN을 구축하였다. 각 은닉층의 퍼셉트론 개수는 가장 정확성이 높은 512개로 하였다. 검증 결과, 보정된 Penman-Monteith 모델식의 R2 = 0.82이었고, ANN의 R2 = 0.94로 나타났다. 따라서 ANN은 일반적인 모델식에 비해 정확한 증산량 추정이 가능한 것으로 나타났고, 추후 수경재배의 효율적인 관수전략 수립에 있어 적용 가능할 것으로 판단되었다.
        4,000원
        6.
        2017.05 구독 인증기관·개인회원 무료
        최근 국내외에서는 수질안정성 향상 및 부지면적 저감을 위해 막여과 공정도입이 활발한 추세이며 특히, 정수처리 분야에서는 정밀여과(Microfiltration) 및 한외여과(Ultrafiltration) 공정이 많이 적용되고 있다. 막여과 공정의 경제성 향상을 위해서는 세정 시점의 예측 및 세정 주기 연장이 매우 중요한 요소이다. 따라서, 본 연구에서는 인공신경망(Artificial neural network)을 활용하여 UF 공정차압(Transmembrane pressure) 예측 모델을 개발하고자 한다. 입력변수로는 유입수 온도, pH, 탁도 등의 일평균값을 이용하였다.
        7.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기존의 회귀분석과는 달리 시계열 분석과 인공신경망 모형을 이용하여 장래 해상교통량을 예측하였다. 특히, 시계열 분석을 통한 예측값을 인공신경망 모형에 추가 입력변수로 적용하여 장래 해상교통량 예측을 제고하고자 하였다. 본 연구는 인천항의 1996년부터 2013년까지 월별 관측값을 대상으로 하였다. 모형의 예측력 검증을 위해 1996년부터 2012년까지 관측값을 대상으로 구축한 모형으로부터 2013년을 예측하여 실제 관측값과의 비교로 적합한 모형을 판별하였다. 인천항의 2015년 장래 해상교통량은 매월 평균 교통량보다 5월과 11월에 각 5.9 %, 4.5 % 많았으며, 1월과 8월은 매월 평균 교통량보다 각 8.6 %, 4.7 % 적은 것으로 예측되었다. 따라서 인천항은 계절에 따른 월별 교통량의 차이를 확인할 수 있다. 본 연구는 해상교통 현장관측 조사시 계절에 따른 교통량의 특성을 반영할 수 있는 기초 자료로 활용될 수 있다.
        4,000원
        8.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        북서태평양에서 발생한 태풍에 대해 발생 후 5일 동안 12시간 간격으로 태풍의 강도 및 진로를 예측할 수 있는 인공신경망 모델을 개발하였다. 사용되어진 예측인지는 CLIPER(발생 위치 강도 일자), 운동학적 파라미터(연직바람시어, 상층발산, 하층상대와도), 열적 파라미터(상층 상당온위, ENSO, 상층온도, 중층 상대습도)로 구성되어졌다. 예측인자의 특성에 따라 일곱개의 인공신경망 모델들이 개발되었으며, CLIPER와 열적 파라미터가 조합된(CLIPER-THERM) 모델이 가장 좋은 예측성능을 보였다. 이 CLIPER-THERM 모델은 강도 및 진로 모두에서 동절기보다 하절기에 더 나은 예측성능을 나타내었다. 또한 태풍의 발생이 아열대 서태평양의 남동쪽에 위치할수록 강도예측에서는 큰 오차를 보였고, 진로예측에서는 아열대 서태평양의 북서쪽에서 발생할수록 큰 오차를 보였다. 이후 인공신경망 모델의 예측성능을 검증하기 위해 같은 예측인자들을 이용하여 다중선형회귀모델을 개발하였으며, 결과로서 비선형 통계기법인 인공신경망 모델이 다중선형회귀모형보다는 더 나은 예측성능을 보였다.
        4,200원
        10.
        2014.02 서비스 종료(열람 제한)
        본 연구에서는 화산재를 건설재료로 활용하기 위하여 백두산, 한라산의 화산재 및 다공성의 제올라이트에 시멘트 및 메타카올린을 첨가한 공시체에 대한 재령 0일, 7일, 28일 배합비별 압축강도 특성 데이터를 바탕으로 인공신경망 모델에 적용하여 학습, 예측함으로써 강도예측을 위한 인공신경망의 적용 가능성을 평가하였다. 인공신경망 모델에는 역전파 학습알고리즘(back-propagation learning algorithm)이 적용되었으며, 다양한 입력변수를 달리한 최적의 인공신경망 조건에서 학습을 시행하였다. 또한, 다양한 배합조건이 일축압축강도에 미치는 영향에 대한 민감도 분석을 실시하였다. 이러한 연구를 통해 얻어진 결과물은 화산재를 활용한 블록의 일축압축강도 특성을 파악하는데 좋은 툴이 될 것으로 기대된다.
        11.
        2011.02 KCI 등재 서비스 종료(열람 제한)
        수문학적 예측에 있어서 강우수치예보의 활용성을 제고하기 위하여 인공신경망을 이용한 정량강수예측기법을 제시하였다. 본 연구에서는 2001년 6월과 7월, 2002년 8월의 중규모수치예보자료와 AWS의 3시간 누적강수, 상층기상관측소에서의 가강수량과 상대습도, 각 선행시간별 강수발생확률을 이용하여 각 선행시간에 따른 강수량을 예측하였다. 강수는 대기변수의 물리적 비선형조합으로 발생하기 때문에 강수에 영향을 미치는 대기변수와 관측강수사이의 비선형관계를 고려하
        12.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이다. 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이