A study on air bag filter for passenger car which is manufacturing preocess and method of very important one of the components. The manufacturing equipment consists of various component which nitting cam, nitting knife, rollers. The development target is weight reduction of metal filter, reduction of process.
지난 수십년간 부직포 산업에 대한 관심이 증대되고 있고, 정부차원에서 환경문제에 관심이 고조되면서 부직포를 이용한 FILTER의 수요는 꾸준히늘고 있다. 특히 대구의 페놀사건 및 리우회담 개최 등으로 환경문제에 전국민이 적극적으로 대응하고 관심의 영역이 급속히 넓어짐으로 인하여 공해방지용 각종 FILTER와 집진기용 FILTER의 수용가 상당히 증가되고 있는 실정이다. 또한 리우회담을 계기로 정부의 공해방지 및 환경에 대한 규제도 대폭 강화되었다. 이에 따라 기존의 직물을 소재로 한 여과매체보다 형태의 안정성, 다양성, FILTERING 효과에서 앞서고 있는 부직포의 여과매체에 대한 관심이 점차 높아지고 있는 실정이다. 따라서 아질 개발하지 못한 부직포를 이용한 FILTER의 개발이 시급하고, 미개척 분야에서의 부직포 사용을 위한 연구가 꾸준히 이루어져야 하겠다. 그리고 환경규제가 강화됨에 따른 고서능 여과포의 개발 또한 시급한 실정이다. 본 장에서는 부직포를 이용한 여과매체, 즌 BAG FILTER의 제조 및 선정 등에 대하여 간략하게 소개하고 추후 부직포 산업의 활성화에 미약하나마 보탬이 되길 바란다.
먼지는 일반적으로 입자크기가 10μm 이상의 강하 먼지와 10μm 이하의 부유먼지로 구분하며, 이들의 먼지는 대기중에서 인간이나 동.식물에 주로 영향을 준다. 입자크기 범위가 0.1~10μm 사이의 부유먼지는 주로 산업공정에서 연료의 연소 또는 고체상 물질의 분쇄 및 수송공정 등에서 주로 발생되며, 입자크기가 2.5μm인 것들은 대기중에서 황산화성 미세먼지와 질산화성 미세먼지로 전환되어 가시도(visibility)에도 큰 영향을 미친다. 대기중에 부유된 먼지중에서 8μm 이하는 호흡시 호흡기로 유입되는 입자크기로써, 입자크기가 6.0μm 이하인 것은 약 10% 정도가 인간의 폐내로 유입되고, 4.0μm 이하인 것은 30%, 2.0μm 이하인 것은 약 99%가 폐(lung)에 유입되어 폐에 침착된다고 보고하였다. 앞으로 산업발전이 계속됨에 따라서 먼지의 배출량이 계속 증가할 것이며, 이로 인해 먼지에 의한 대기오염이 심각해질 뿐만 아니라 인간에 미치는 피해도 심각해질 것으로 예측된다.
In this study, using coke dust from ironwork, the pulse pressure on a pulse air jet bag filter was investigated considering the influence of the pressure loss due to filtration velocity and pressure intervals. The research on the optimal pulse pressure prediction of a pulse air jet type bag filter using coke dust showed the following results. Pressure loss volatility produced by the pulse pressure under low dust concentration(0.5, 1 g/m3) and low face velocity(1.25 m/min) was less than 10 mmH2O. This suggests that the pulse pressure has a low impact on the pressure loss. In contrast, pressure loss volatility under high dust concentration(3 g/m3) and high face velocity(1.75 m/min) was 25 mmH2O. Therefore, pulse pressure with high dust concentration and high face velocity has a strong influence on the pressure loss volatility, compared to the condition of low dust concentration and low face velocity. The optimal pulse pressure of inlet dust concentration(0.5 g/m3) was 6 kg/cm2 under the same face velocity(1.75 m/min). As concentration increased from 1 to 2 g/m3, the pulse pressure gradually reached 5 kg/cm2 thus indicating that the pulse pressure(5 kg/cm2) is pertinent at a high concentration(3 g/m3). The pulse intervals: 20, 25 and 30 sec, which are relatively longer than 10 and 15 sec, corresponded to high pressure loss volatility produced by the pulse pressure. Furthermore, low pressure loss volatility was noted at 5 kg/cm2 of the overall pulse pressure.
In this study, pressure drop was measured in the pulse jet bag filter without venturi on which 16 numbers of filter bags (Ø140 × 850 ℓ) are installed according to operation condition(filtration velocity, inlet dust concentration, pulse pressure, and pulse interval) using coke dust from steel mill. The obtained 180 pressure drop test data were used to predict pressure drop with multiple regression model so that pressure drop data can be used for effective operation condition and as basic data for economical design.
The prediction results showed that when filtration velocity was increased by 1%, pressure drop was increased by 2.2% which indicated that filtration velocity among operation condition was attributed on the pressure drop the most. Pressure was dropped by 1.53% when pulse pressure was increased by 1% which also confirmed that pulse pressure was the major factor affecting on the pressure drop next to filtration velocity. Meanwhile, pressure drops were found increased by 0.3% and 0.37%, respectively when inlet dust concentration and pulse interval were increased by 1% implying that the effects of inlet dust concentration and pulse interval were less as compared with those changes of filtration velocity and pulse pressure. Therefore, the larger effect on the pressure drop the pulse jet bag filter was found in the order of filtration velocity(Vf), pulse pressure(Pp), inlet dust concentration(Ci), pulse interval(Pi).
Also, the prediction result of filtration velocity, inlet dust concentration, pulse pressure, and pulse interval which showed the largest effect on the pressure drop indicated that stable operation can be executed with filtration velocity less than 1.5 m/min and inlet dust concentration less than 4 g/m3. However, it was regarded that pulse pressure and pulse interval need to be adjusted when inlet dust concentration is higher than 4 g/m3. When filtration velocity and pulse pressure were examined, operation was possible regardless of changes in pulse pressure if filtration velocity was at 1.5 m/min. If filtration velocity was increased to 2 m/min. operation would be possible only when pulse pressure was set at higher than 5.8 kgf/cm2. Also, the prediction result of pressure drop with filtration velocity and pulse interval showed that operation with pulse interval less than 50 sec. should be carried out under filtration velocity at 1.5 m/min. While, pulse interval should be set at lower than 11 sec. if filtration velocity was set at 2 m/min.
Under the conditions of filtration velocity lower than 1 m/min and high pulse pressure higher than 7 kgf/cm2, though pressure drop would be less, in this case, economic feasibility would be low due to increased in installation and operation cost since scale of dust collection equipment becomes larger and life of filtration bag becomes shortened due to high pulse pressure.
Foundry has an important economic value in the industry. However, the generation of air pollutants like particulate and odor are serious. Due to the unavoidable usage of molding sand, particulate occurs in almost all the processes. That accounts for the majority of respirable dust in the size less than 10 ㎛. As well as particulate, over 22 species of odor-causing gases and VOCs including hydrogen sulfide and ammonia are occurred. Therefore, the development of equipment that can simultaneously remove TVOC and particulate is regarded as an essential research. In this study, the spraying absorbent system was connected with the shear bag filter for the purpose to remove TVOC and particulate simultaneously. Maximization of process efficiency for the affective factors like the powder combination and injection method is conducted. The experiment was performed at the de-molding process of one foundry plant. Through these devices, the removal efficiency of more than 95% for TVOC was achieved with the absorbent that composed by 800 mesh Activated carbon (80%) and 300 mesh zeolite (20%). Also, the durability and economic evaluation were assessed. In the result of Durability assessment, the available recovery to maintain the deodorizing effect at 90% was counted to 350 degree.
A pilot-scale pulse-jet bagfilter was designed, built and tested for the effects of four operating conditions (filtration velocity, inlet dust concentration, pulse pressure, and pulse interval time) on the total system pressure drop, using coke dust from a steel mill factory. Two models were used to predict the total pressure drop according to the operating conditions. These model parameters were estimated from the 180 experimental data points. The empirical model (EM) with filtration velocity, areal density, inlet dust concentration, pulse interval time and pulse pressure shows the best correlation coefficient (R=0.971) between experimental data and model predictions. The empirical model was used as it showed higher correlation coefficient (R=0.971) compared to that of the Multivariate linear regression(MLR) (R=0.961). The minimum pulse pressure predicted by empirical model (EM) was 5kg/㎠.
The new empirical static model was constructed on the basis of dimension analysis to predict the pressure drop according to the operating conditions. The empirical static model consists of the initial pressure drop term (N dust = ω0υf / P pulse t) and the dust mass number term (Δp initial), and two parameters (dust deposit resistance and exponent of dust mass number) have been estimated from experimental data. The optimum injection distance was identified in the 64 experimental data at the fixed filtration velocity and pulse pressure. The dust deposit resistance (K d), one of the empirical static model parameters got the minimum value at , d=0.11m, at which the total pressure drop was minimized. The exponent of dust mass number was interpreted as the elasticity of pressure drop to the dust mass number. The elasticity of the unimodal behavior had also a maximum value at , d=0.11m, at which the pressure drop increased most rapidly with the dust mass number. Additionally, the correlation coefficient for the new empirical static model was 0.914.
The pressure drop through pulse air jet-type bag filter is one of the most important factors on the operating cost of bagfilter houses.
In this study, the pilot-scale pulse air jet-type bag filter with about 6 ㎡ filtration area was designed and tested for investigating the effects of the four operating conditions on the total pressure drop, using the coke dust collected from a steel mill factory.
When the face velocity is higher than 2 m/min, it is not applicable to on-spot due to the increase of power expenses resulting from a high-pressure drop, and thus, 1.5 m/min is considered to be reasonable. The regression analysis results show that the degree of effects of independent parameters is a order of face velocity > concentration > time > pressure.
The results of SPSS answer tree analysis also reveal that the operation time affects the pressure drop greatly in case of 1 m/min of face velocity, while the inlet concentration affects the pressure drop in case of face velocity more than 1.5 m/min.
Research results for the pressure drop variance depending on operation conditions such as change of inlet concentration, pulse interval, and face velocity, etc., in a pulse air jet-type bag filter show that while at 3kg/cm2 whose pulse pressure is low, it is good to make an pulse interval longer in order to form the first layer, it may not be applicable to industry because of a rapid increase in pressure. In addition, the change of inlet concentration contributes more to the increase of pressure drop than the pulse interval does. In order to reduce operation costs by minimizing filter drag of a filter bag at pulse pressure 5kg/cm2, the dust concentration should be minimized, and when the inlet dust loading is a lower concentration, the pulse interval in the operation should be less than 70 sec, but when inlet dust loading is a higher concentration, the pulse interval should be below 30 sec. In particular, in the case that inlet dust loading is a higher concentration, a high-pressure distribution is observed regardless of pulse pressure. This is because dust is accumulated continuously in the filter bag and makes it thicker as filtration time increases, and thus the pulse interval should be set to below 30 sec. If the equipment is operated at 1m/min of face velocity, while pressure drop is low, the bag filter becomes larger and thus, its economics are very low due to a large initial investment. Therefore, a face velocity of around 1.5 m/min is considered to be the optimal operation condition. At 1.5 m/min considered to be the most economical face velocity, if the pulse interval increases, since the amount of variation in filter drag is large, depending on the amount of inlet dust loading, the operation may be possible at a lower concentration when the pulse interval is 70 sec. However, for a higher concentration, either face velocity or pulse interval should be reduced.
The change of pressure drop according to the change in the inlet concentration, pulse interval, and injection distance of pulse air jet type bag filters, and the effect of venturi installation are as follows.
The pressure drop with the range of 30 to 50mmH2O varies according to the injection distance with 30, 50, 70, 90sec and the inlet concentration of venture built-in fabric filters. For the lower concentration of 0.5g/m3 and 1g/m3, the pressure drop(ΔP) was stable 60 to 90minutes after operation. For the higher concentration of 3g/m3, as ΔP continues to go up, pulse interval should be set shorter than 30 seconds.
The pressure drop with the injection distance of 110mm, when inlet dust concentration is 0.5g/m3 or 1g/m3, is 1.3 to 2 lower than with the injection distance of 50, 160, and 220mm, which means that the inflow amount of the secondary air by the instant acceleration is large. The injection distance of 2g/m3 and 3g/m3 has the similar pressure distribution. The higher inlet concentration is, the more important pulse interval is than injection distance.
The pressure drop has proved to be larger when inlet concentration is lower and injection distance closer, on condition that the venturi is installed. The change in the pressure drop was smallest when injection distance was 50mm, followed by 220mm, 160mm, and 110mm.