Given the hazards posed by black ice, it is crucial to investigate the conditions that contribute to its formation. Two ensemble machinelearning algorithms, Random Forest (RF) and Extreme Gradient Boosting (XGBoost), were employed to forecast the occurrence of black ice using atmospheric data. Additionally, explainable artificial intelligence techniques, including Feature Importance (FI) and partial dependence Plot (PDP), were utilized to identify atmospheric conditions that significantly increase the likelihood of black ice formation. The machinelearning algorithms achieved a forecasting accuracy of 90%, demonstrating reliable performance. FI analysis revealed distinct key predictors between the algorithms: relative humidity was the most critical for RF, whereas wind speed was paramount for XGBoost. The PDP analysis identified the specific atmospheric conditions under which black ice was likely to form. This study provides detailed insights into the atmospheric precursors of frost/fog-induced black ice formation. These findings enable road managers to implement proactive winter road maintenance strategies, such as optimizing anti-icing patrol routes and displaying warnings on various message signs, thereby enhancing road safety.
결빙(Black Ice)은 도로 포장체 표면의 균열 등에 스며든 습기나 눈, 그리고 차량 주행 중 발생하는 타이어 분진 및 배 기가스 등의 영향으로 인해 도로 표면과 유사한 색상의 얇은 얼음막이 형성되는 현상을 의미한다(Cho et al., 2021). 도로 노면이 결빙 상태일 경우, 평균 미끄럼 저항 계수는 건조 노면의 약 30% 수준으로 크게 낮아진다(Lee et al., 2024). 또 한, 결빙은 도로 표면과 색상이 유사하여 운전자가 노면 상태를 즉각적으로 인지하기 어렵고, 이에 따라 제동이나 회피 를 위한 충분한 시간을 확보하기 어렵다. 최근 5년간 발생한 서리·결빙 노면 교통사고의 치사율(사고 100건당 사망자 수) 은 2.69명으로, 이는 건조 노면 교통사고 치사율의 약 2배, 습윤 노면의 1.3배 수준에 해당한다(KoROAD, 2024). 이러한 위험성을 고려하여 국토교통부는 2020년 전국 고속국도 및 일반, 위임국도를 대상으로 403개 구간을 결빙 취약 구간으로 지정하였으며, 이후 464개소로 확대하여 자동염수분사시설, 그루빙(Grovving), 결빙주의표지판 등 안전시설을 확충하여 결빙사고를 집중적으로 관리하고 있다(MOLIT, 2020; BAI 2021). 하지만, 결빙사고 발생건수는 2020년 524건, 2021년 1,204건, 2022년 1,042건으로 증가추세를 보이고 있어, 결빙 취약 구간의 평가 적절성과 실효성에 대한 검토 필요성이 대 두되고 있다(KoROAD, 2024). 본 연구에서는 최근 10년 고속국도에서 발생한 결빙사고와 결빙사고 영향인자를 Random Forest Algorithm으로 분석하 여 도로 구간별 결빙사고 위험도를 평가하였다. 국가교통정보센터의 노드·링크(Node·Link) 체계를 기반으로 전국 고속국 도의 동절기 기상, 기하구조, 교통량 등 결빙사고 영향인자를 구간별로 수집하였다. 각 구간은 최근 10년 결빙사고 데이 터를 통해 결빙사고 발생구간과 비발생 구간으로 분류하였다. 구간별 수집한 결빙사고 영향인자를 독립변수, 사고발생유 무를 종속변수로하여 알고리즘 학습을 위한 데이터셋(Data Set)을 구성하고, 데이터불균형 문제를 해결하기 위해 오버샘 플링(OverSampling) 기법 중 하나인 SMOTE(Synthetic Minority Oversampling Technique)을 적용하였다. 최종적으로 Random Forest Classification Model을 학습하고, 모델의 하이퍼파라미터 조정(HyperParameter Tunning)을 거처 결빙사 고 발생구간 예측성능이 가장 높은 모델을 결정하였다. 이를 통해, 전국 고속국도의 구간별 결빙사고 발생 위험도를 평 가하고 각 결빙사고 영향인자의 변수중요도를 분석함으로써 결빙 취약구간 평가 방안의 신뢰성 제고를 기대한다.
결빙되거나 적설이 있는 도로와 같이 마찰이 작은 노면에서는 일반 노면과 비교했을 때 제동거리가 크게 증가하기 때문에 심각한 교통사고로 이어질 수 있다. 이에 블랙 아이스(Black ice)와 같은 노면 위험을 감지 하기 위한 노면 분류 기술에 대한 연구가 지금까지 지속적으로 이루어지고 있다. ESC(Electronic Stability Control) 시스템은 차량 자세 제어를 통해 마찰이 작은 노면에서 차량의 미끄러짐 및 전복을 방지하는 능동 안전시스템(Active safety system)이다. ESC 시스템의 성능을 위해서는 정확한 노면 마찰 계수(Road friction coefficient) 추정을 통한 노면 분류가 중요하다. 최근의 노면 분류 기술은 카메라, LiDAR 등의 이미 지 기반의 방법에 중점을 두고 연구가 진행되고 있다. 그러나 이러한 이미지 기반의 방법들은 정확도가 낮을 뿐만 아니라 높은 계산 복잡도의 문제를 가지고 있다. 이뿐만 아니라 높은 비용으로 인해 상용화 측면에서도 단점을 드러내고 있다. 본 연구에서는 그림1처럼 센서 융합 기술을 활용하여 이미지 기반 방법의 문제점을 해결하고자 한다. 차량 횡방향 동역학 모델(Vehicle lateral dynamic model)을 선형화하여 칼만 필터(Kalman filter)를 적용한 노면 마찰 계수 추정 알고리즘을 설계하고, 기계학습(Machine learning) 모델을 적용하여 블랙 아이스 검출 알고 리즘을 설계한다. 전기차 CAN 버스로부터 얻을 수 있는 차량 종방향 가속도(Vehicle longitudinal acceleration)를 제어 입력으로 하고, 요 레이트(Yaw rate)를 측정값으로 하여 칼만 필터에 적용하여 차량 종 방향 속도(Vehicle longitudinal velocity)와 차량 횡방향 속도(Vehicle lateral velocity), 요 레이트, 차량 횡방 향 힘(Vehicle lateral force)을 추정한다. 이때 전통적인 칼만 필터 대신 EKF-UI(Extended kalman filter with unknown input)를 적용하여 시스템 행렬의 크기를 줄여 계산 복잡도를 감소시키고 차량의 거동 변화 를 보다 정확하게 반영할 수 있도록 하였다. 추정된 차량 종방향 속도, 차량 횡방향 속도, 요 레이트를 통해 사이드 슬립 각(Side slip angle)을 구해 사이드 슬립 각과 차량 횡방향 힘의 관계를 이용해 특징들을 찾아 기계학습 모델(e.g. 앙상블 기법, SVM 등)을 적용하여 블랙 아이스를 검출할 수 있다. MATLAB/Simulink SW 및 CarSim을 사용하여 개발한 알고리즘의 성능을 검증하였으며, 본 연구의 결과는 ESC 시스템의 성능 을 개선시켜 차량의 미끄러짐으로 인한 교통사고의 예방에 도움이 될 것으로 예상한다. 여기에 스마트 타이 어(Smart tire)의 센서도 추가해 노면과 타이어 사이의 직접적인 데이터를 추가해 검출 성능을 높일 것이다.
This paper presents a finite-difference method (FDM)-based heat-transfer model for predicting black-ice formation on asphalt pavements and establishes decision criteria using only meteorological data. Black ice is a major cause of winter road accidents and forms under specific surface temperature and moisture conditions; however, its accurate prediction remains challenging owing to dynamic environmental interactions. The FDM incorporates thermodynamic properties, initial pavement-temperature profiles, and surface heat-transfer mechanisms, i.e., radiation, convection, and conduction. Sensitivity analysis shows the necessity of a 28-d stabilization period for reliable winter predictions. Black-ice prediction logic evaluates the surface conditions, relative humidity, wind speed, and latent-heat accumulation to assess phase changes. Field data from Nonsancheon Bridge were used for validation, where a maximum prediction accuracy of 64% is indicated in specific cases despite the overestimation of surface temperatures compared with sensor measurements. These findings highlight the challenges posed by wet surface conditions and prolonged latent-heat retention, which extend the predicted freezing duration. This study provides a theoretically grounded methodology for predicting black ice on various road structures without necessitating additional measurements. Future studies shall focus on enhancing the model by integrating vehicle-induced heat effects, solar radiation, and improved weather-prediction data while comparing the FDM with machine-learning approaches for performance optimization. The results of this study offer a foundation for developing efficient road-safety measures during winter.
2019년 12월, 상주-영천 고속도로 상행선에서 도로 노면 결빙에 의한 연쇄추돌사고로 48명의 사상자가 발생하였다. 이에, 국토교통부 는 2020년 1월 결빙 취약구간 선정기준을 마련하여 결빙 취약구간 403개소를 지정하고, 결빙 취약구간을 대상으로 2022년까지 1,699억 원의 예산을 투입하여 결빙사고 예방사업을 계획하였다(BAI, 2021). 하지만, 결빙 취약구간 선정기준에 대해 적정성 검토가 이루어지 지 않아 그 신뢰성과 실효성이 충분히 검증되지 않았다. 본 연구에서는 국가교통정보센터의 노드·링크(Node·Link) 체계를 기반으로 전국 고속국도 및 일반국도의 특성정보(시설, 선형구조, 기상, 교통 등)를 GIS(Geographic Information System) 데이터로 구축하였다. 최근 5년 결빙사고 발생이력이 있는 도로구간(Link)을 확인하고 Random Forest 알고리즘을 통해 도로 특성정보의 결빙사고에 대한 변수 중요도(Feature Importance)를 분석했다. 이를 통해 결빙사고와 각 인자의 상관성을 파악하여 ‘결빙 취약구간 평가 세부 배점표’의 항목별 배점을 수정, 보완함으로써 평가표의 신뢰성을 제고한다.
Black ice, a thin and nearly invisible ice layer on roads and pavements, poses a significant danger to drivers and pedestrians during winter due to its transparency. We propose an efficient black ice detection system and technique utilizing Global Positioning System (GPS)-reflected signals. This system consists of a GPS antenna and receiver configured to measure the power of GPS L1 band signal strength. The GPS receiver system was designed to measure the signal power of the Right-Handed Circular Polarization (RHCP) and Left-Handed Circular Polarization (LHCP) from direct and reflected signals using two GPS antennas. Field experiments for GPS LHCP and RHCP reflection measurements were conducted at two distinct sites. We present a Normalized Polarized Reflection Index (NPRI) as a methodological approach for determining the presence of black ice on road surfaces. The field experiments at both sites successfully detected black ice on asphalt roads, indicated by NPRI values greater than 0.1 for elevation angles between 45o and 55o. Our findings demonstrate the potential of the proposed GPS-based system as a cost-effective and scalable solution for large-scale black ice detection, significantly enhancing road safety in cold climates. The scientific significance of this study lies in its novel application of GPS reflection signals for environmental monitoring, offering a new approach that can be integrated into existing GPS infrastructure to detect widespread black ice in real-time.
최근 국내 겨울철 블랙아이스(Black Ice)로 인해 발생하는 교통사고가 증가하는 추세이며, 한국 도로교통공단 조사 결 과 2016~2020년 겨울철까지 블랙아이스로 인한 사고는 총 4,868건이며, 사상자는 8,938명인 것으로 조사 되었다. 도로상 태에 따라 건조대비 동결상태에서 교통사고 발생시 치사율이 43%로 높게 나타났다. 이러한 사고는 기온이 떨어지는 12 월부터 급증하여, 최저기온이 가장낮은 1월까지 증가한다. 블랙아이스는 도로에 쌓인 눈이 융해(해설)과 동시에 도로 위 각종 이물질과 결합 후 재동결하여 흑색 동결막을 형성하는 것을 말한다. 그 특성상 운전자가 차량내부에서 도로의 상태 를 쉽게 파악할 수 없으며 대부분의 운전자가 차량이 미끄러지기 시작함과 동시에 인지하여 사고가 발생하게 된다. 이에 본 연구에서는 기존 포장체의 미끄럼 저항도를 상태별로 비교 분석하였다. 포장체의 미끄럼 저항성 정도를 파악하기 위 해 영국식 미끄럼저항 시험기 (British Pendulum Tester ; BPT)를 사용하였으며, 포장체의 종류로는 일반적인 밀입도 아스팔트 포장, 배수성 아스팔트 포장, 그루빙(포장 표면에 일정한 규격의 홈을 형성)을 적용한 콘크리트 포장, 그루빙이 없는 콘크리트 포장을 적용하였다. 미끄럼저항 실험은 관련 KS규격 및 ASTM규격에 준하여 실시하되 블랙아이스를 모 사하기위하여 표면온도 영하 2~3℃ 샘플에 강우를 모사한 물을 분사하며 영하 9℃로 10분 동결 후 2mm강수량을 모사 한 수분을 재 분사한 후 시험을 실시하였다.
PURPOSES : The purpose of this study was to develop techniques for forecasting black ice using historical pavement temperature data collected by patrol cars and concurrent atmospheric data provided by the Korea Meteorological Administration.
METHODS : To generate baseline data, the physical principle that ice forms when the pavement temperature is negative and lower than the dew-point temperature was exploited. To forecast frost-induced black ice, deep-learning algorithms were created using air, pavement, and dew point temperatures, as well as humidity, wind speed, and the z-value of the historical pavement temperature of the target segment.
RESULTS : The suggested forecasting models were evaluated against baseline data generated by the above-mentioned physical principle using pavement temperature and atmospheric data gathered on a national highway in the vicinity of Young-dong in the Chungcheongbukdo province. The accuracies of the forecasting models for the bridge and roadway segments were 94% and 90%, respectively, indicating satisfactory results.
CONCLUSIONS : Preventive anti-icing maintenance activities, such as applying anti-icing chemicals or activating road heating systems before roadways are covered with ice (frost), could be possible with the suggested methodologies. As a result, traffic safety on winter roads, especially at night, could be enhanced.
PURPOSES : Road surface conditions are vital to traffic safety, management, and operation. To ensure traffic operation and safety during periods of snow and ice during the winter, each local government allocates considerable resources for monitoring that rely on field-oriented manual work. Therefore, a smart monitoring and management system for autonomous snow removal that can rapidly respond to unexpected abrupt heavy snow and black ice in winter must be developed. This study addresses a smart technology for automatically monitoring and detecting road surface conditions in an experimental environment using convolutional neural networks based on a CCTV camera and infrared (IR) sensor data. METHODS : The proposed approach comprises three steps: obtaining CCTV videos and IR sensor data, processing the dataset acquired to apply deep learning based on convolutional neural networks, and training the learning model and validating it. The first step involves a large dataset comprising 12,626 images extracted from the acquired CCTV videos and the synchronized surface temperature data from the IR sensor. In the second step, image frames are extracted from the videos, and only foreground target images are extracted during preprocessing. Hence, only the area (each image measuring 500 × 500) of the asphalt road surface corresponding to the road surface is applied to construct an ideal dataset. In addition, the IR thermometer sensor data stored in the logger are used to calculate the road surface temperatures corresponding to the image acquisition time. The images are classified into three categories, i.e., normal, snow, and black-ice, to construct a training dataset. Under normal conditions, the images include dry and wet road conditions. In the final step, the learning process is conducted using the acquired dataset for deep learning and verification. The dataset contains 10,100 (80%) data points for deep learning and 2,526 (20%) points for verification. RESULTS : To evaluate the proposed approach, the loss, accuracy, and confusion matrix of the addressed model are calculated. The model loss refers to the loss caused by the estimated error of the model, where 0.0479 and 0.0401 are indicated in the learning and verification stages, respectively. Meanwhile, the accuracies are 97.82% and 98.00%, respectively. Based on various tests that involve adjusting the learning parameters, an optimized model is derived by generalizing the characteristics of the input image, and errors such as overfitting are resolved. This experiment shows that this approach can be used for snow and black-ice detections on roads. CONCLUSIONS : The approach introduced herein is feasible in road environments, such as actual tunnel entrances. It does not necessitate expensive imported equipment, as general CCTV cameras can be applied to general roads, and low-cost IR temperature sensors can be used to provide efficiency and high accuracy in road sections such as national roads and highways. It is envisaged that the developed system will be applied to in situ conditions on roads.
of actual and suspicious black-ice cases that occurred during the last 10 years in the Republic of Korea. METHODS : Based on literature review, meteorological observation data associated with black-ice formation are selected: wind speed, air temperature (T), dew point temperature (Td), and relative humidity, to set minimum or maximum threshold values based on the normal distribution of each variable. In addition, weights are assigned based on the relationship among the variables to calculate the probability of occurrence. RESULTS : The threshold values are calculated using the average and standard deviation, resulting in 7.65 °C, 56.63%, 2.99 ms-1 for T-Td, relative humidity, and wind speed, respectively. Whereas the threshold value of T-Td and wind speed is set to the maximum threshold, that of the relative humidity is set to the minimum threshold value. These threshold values are applied to the diagnosis algorithm of black-ice formation, including a 1-h accumulated precipitation. CONCLUSIONS : The algorithm is expected to be utilized as a research methodology for diagnosing suspected cases of black ice.
PURPOSES : This study aims to determine the type (e.g., melting point, freezing point, latent heat fusion) and optimal content of phase change material (PCM) based on the numerical and experimental analyses evaluating the effects of heat transfer in PCM-modified asphalt pavement systems.
METHODS : The effect of PCM on the thermophysical properties of PCM-modified asphalt concrete can be taken as an effective volumetric heat capacity. The volumetric fraction of PCM was calculated using an iterative method. The numerical model was established and computed using the MATLAB 2020 software. The optimum PCM design tool was developed to select the type and contents of the PCM. The PCM was chosen based on the following criteria: black-ice-formation delay time, minimize temperature increase, and increase temperature area. To validate the numerical model, asphalt mixtures were modified with varying PCM contents, and the temperature response of the PCMmodified asphalt samples was examined via temperature test. RESULTS : The numerical results showed that incorporating PCM into the asphalt mixture can slow the cooling rate of the pavement system. The predicted results from the optimum PCM design tool were highly consistent with the measured values from the laboratory temperature test. CONCLUSIONS : The temperature of PCM-modified asphalt pavement can be predicted via numerical method. The effect of PCM on the thermophysical properties can be considered as effective volumetric heat capacity; while the volume fraction of PCM can be calculated via an iterative method. The accuracy of the numerical model was confirmed by a high agreement between the measured and predicted values.
Better understanding the mechanism of black ice occurrence on the road in winter is necessary to reduce the socio-economic damage it causes. In this study, intensive observations of road weather elements and surface information under the influence of synoptic high-pressure patterns (22nd December, 2020 and 29th January, and 25th February, 2021) were carried out using a mobile observation vehicle. We found that temperature and road surface temperature change is significantly influenced by observation time, altitude and structure of the road, surrounding terrain, and traffic volume, especially in tunnels and bridges. In addition, even if the spatial distribution of temperature and road surface temperature for the entire observation route is similar, there is a difference between air and road surface temperatures due to the influence of current weather conditions. The observed road temperature, air temperature and air pressure in Nongong Bridge were significantly different to other fixed road weather observation points.