검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 38

        1.
        2023.11 구독 인증기관·개인회원 무료
        Deep borehole drilling is essential not only to select the host rock type for deep geological disposal of high-level radioactive waste (HLW), but also to identify the characteristics of the disposal site during the site selection process. In particular, since the disposal depth of HLW is considered to be over 300 m, deep borehole drilling must be performed. In deep borehole drilling, drilling design, excavation, and operation may vary depending on the rock type, drilling depth, and drilling purpose etc. This study introduced cases in which Korea was divided into four geotectonic structures and four representative rock types and conducted with a goal of 750 m drilling depth. Prior to this, a review of deep drilling cases conducted at domestic and abroad was presented. If sufficient time and cost are available, several drilling holes can be excavated for various purposes, but if not, one or two drilling holes should be used to achieve the objectives of various fields related to HLW disposal. The presence of bedding, strata or fault zones depending on the type of rock, etc. may affect drilling deviation or circulating water management. In addition, unlike drilling in general geotechnical investigation drilling, the use of polymers or grouting agents is limited to determine hydraulic and geochemical characteristics. This report introduces the experience considered during the design and drilling process of deep drilling in granite, gneiss, sedimentary rock, volcanic rock, etc., and is expected to be used as basic data when carrying out future HLW projects.
        2.
        2022.10 구독 인증기관·개인회원 무료
        Despite the increasing interest in Deep Borehole Disposal (DBD) for its capability of minimizing disposal area, detailed research about DBD operation system design should be conducted before the DBD can be implemented. Recently, DBD operation system applying wireline emplacement (WE) technique is under study due to its high flexibility and capability of minimizing surface equipment. In this study, a conceptual WE system, and operation procdure is introduced. The conceptual WE system consists of 3 main stations, which from the top are hoisting station (HS), canister connection station (CCS) and basement (BS). In HS, WE is controlled and monitored. The WE is controlled using wireline drum winch and sheaves, and load on wireline is measured using a load cell. HS also has a pressure control system (PCS), which monitors internal pressure of the system, and a lubricator, which act as housing for joint device, allowing the joint device to be easily inserted into the borehole. The joint device is used to connect the disposal canister to wireline for emplacement/retrieval. In CCS, a rail transporter brings a transport cask containing disposal canisters, then the transport cask is connected to the hoisting system and a PCS in the BS. The main component located at canister station are a sliding shielding door (SSD), and a slip. The SSD is used to prevent canister from falling into borehole during the connecting operation and prevent radiation from BS to affect the workers. The slip is located beneath the SSD and is used to hold the disposal canister before it is lowered into the borehole. In BS, PCS is installed to prevent overflow and blowout of borehole fluid. The PCS consists of wireline pressure valve, christmas tree and BOP, which all are a type of pressure valve to seal the borehole and release pressure inside the borehole. The WE procedure starts with transporting transport cask to CCS. The transport cask is connected to lubricator, and PCS. Joint device is lowered down to be connected with disposal canisters, then pulled up to check the load on the wireline. After the check-up, SSD is opened, and disposal canister is lowered into the borehole. When desired depth is reached, joint device is disconnected and retrieved for next emplacement. In this study, the conceptual deep borehole disposal system design implementing WE technique is introduced. Based on this study, further detailed design could be derived in future, and feasibility could be tested.
        3.
        2022.10 구독 인증기관·개인회원 무료
        The reliable information on the hydraulic characteristics of rock mass is one of the key site factors for design and construction of deep subsurface structures such as geological radioactive nuclear waste disposal repository, underground energy storage facility, underground research laboratory, etc. In order to avoid relying on foreign field test technology in future projects, we have independently designed and made integrated type main frame, 120 bar waterproof downhole sonde, and 1,200 m wireline cable winch through a series of R&D activities. They are core apparatuses of the Deep borehole Hydraulic Test System (DHTS). Integration of individual test equipment into a single main frame allows safe and efficient work in the harsh field condition. The DHTS was developed aiming primarily for constant pressure (head) injection test and pulse test in deep impermeable rock mass. The maximum testing depth of the DHTS is about 1,050 m from the surface. Using this system, it is possible to make precise stepwise control of downhole net injection pressure in less than 2.0 kgf/cm2 with dual hydraulic volume controller and also to inject and measure the very low flow rate below 0.01 l/min with micro flow rate injection/control module. Over the past two years, we have successfully completed more than 50 in situ hydraulic tests at 5 deep boreholes located in the Mesozoic granite and sedimentary rock regions in Korea. Among them, the deepest testing depth was more than 920 m. In this paper, the major characteristics of the DHTS are introduced and also some results obtained from the high precision field tests in the deep and low permeable rock mass environment are briefly discussed.
        4.
        2022.05 구독 인증기관·개인회원 무료
        A GoldSim Total System Performance Assessment has been developed and utilized for assessment of the various conceptual HLW repositories for spent nuclear fuels during last a few decades. Even though, almost all required parameter values associated with the repository system are frequently assumed or sometimes overestimated, they are still far from being highly reliable. Uncertainties nested in nuclide transport modeling around the repository are mainly dominated by these parametric uncertainties aside from intrinsic model uncertainty. Reliable estimate of the parameter values commonly expressed as probability density functions (PDFs) always require a large amount of measured data. Such input distributions are used as input to the probabilistic assessment program through Monte Carlo simulation to quantitatively provide possible uncertainty of the results. However, in most cases, especially in the safety assessment of the repository which is typically related with both long-time span and wide modeling domain, inefficient observed data from the field measurements are common, making conventional probabilistic calculations rather even uncertain. Since Bayesian approach is known to be especially powerful and efficient in the case of lacking of available data measured, such short data could be compensated by coupling with a priori belief, reducing uncertainty. By allowing the a priori knowledge for incorporating insufficient observed data, which include expert’ elicitation, their beliefs and judgment regarding the parameters as well as recent site-specific measurements, based on the Bayes’ theorem, the older parameter distributions, “prior” distribution can be updated to a rather newer and reliable “posterior” distribution. Newer distributions are not necessarily expressed as PDFs for probabilistic calculation. These updates could be done even iteratively as many times as data values are sequentially available, which calls sequential Bayesian updating, making belief of posterior distributions become much higher by reducing parametric uncertainty. To show a possible way to enhance the belief as well as to reduce the uncertainty involved in parameter for the Bayesian scheme, nuclide travel length in the far-field area of a hypothetical deep borehole spent fuel Repository was investigated. The algorithm and module that have been developed and implemented in GSTSPA through current study was shown to work well for all assumed prior, three sequential posterior distributions and likelihoods.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Deep geological disposal (DGD) of spent nuclear fuels (SNF) at 500 m–1 km depth has been the mainly researched as SNF disposal method, but with the recent drilling technology development, interest in deep borehole disposal (DBD) at 5 km depth is increasing. In DBD, up to 40SNF canisters are disposed of in a borehole with a diameter of about 50 cm, and SNF is disposed of at a depth of 2–5 km underground. DBD has the advantage of minimizing the disposal area and safely isolating highlevel waste from the ecosystem. Recently, due to an increasing necessity of developing an efficient alternative disposal system compared to DGD domestically, technological development for DBD has begun. In this paper, the research status of canister operation technology and plans for DBD demonstration tests, which subjects are being studied in the project of developing a safety-enhancing high-efficiency disposal system, are introduced. The canister operation technology for DBD can be divided into connection device development and operation technology. The developing connection device, emplacing and retrieving canisters in borehole, adopted the concept of a wedge thus making replacement equipment at the surface unnecessary. The new connection device has the advantage of being well applied with emplacement facilities only by simple mechanical operation. The technology of operating a connection device in DBD can be divided into drill pipe, coiled tubing, free-drop, and wireline. The drill pipe is a proven method in the oil industry, but requiring huge surface equipment. The coiled tubing method uses a flexible tube and shares disadvantages as the drill pipe. The free-drop is a convenient method of dropping canister into a borehole, but has a weakness in irretrievability in an accident. Finally, the wireline method can be operational on a small scale using hydraulic cranes, but the number of operated canisters at once is limited. The test facility through which the connection device is to be tested consists of dummy canister, borehole, lifting part, monitoring part, and connecting device. The canister weight is determined according to the emplacement operation unit. The lifting part will be composed following wireline consisting of a crane, a wire and a winding system. The monitoring part will consist of an external monitoring system for hoists and trolleys, and an internal monitoring system for the connection device’s location, pressure, and speed. In this project, a demonstration test will be conducted in a borehole with 1km depth, 10 cm diameter provided by KAERI to verify operation in the actual drilling environment after design improvement of the connecting device. If a problem is found through the demonstration test, the problem will be improved, and an improved connection device will be tested to an extended borehole with a 2 km depth, 40 cm diameter.
        6.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Safe geological disposal of spent nuclear fuel (SNF) requires knowledge of the deep hydrochemical characteristics of the repository site. Here, we conducted a set of deep hydrochemical investigations using a 750-m borehole drilled in a model granite system in Wonju, South Korea. A closed investigation system consisting of a double-packer, Waterra pump, flow cell, and water-quality measurement unit was used for in situ water quality measurements and subsequent groundwater sampling. We managed the drilling water labeled with a fluorescein dye using a recycling system that reuses the water discharged from the borehole. We selected the test depths based on the dye concentrations, outflow water quality parameters, borehole logging, and visual inspection of the rock cores. The groundwater pumped up to the surface flowed into the flow cell, where the in situ water quality parameters were measured, and it was then collected for further laboratory measurements. Atmospheric contact was minimized during the entire process. Before hydrochemical measurements and sample collection, pumping was performed to purge the remnant drilling water. This study on a model borehole can serve as a reference for the future development of deep hydrochemical investigation procedures and techniques for siting processes of SNF repositories.
        4,900원
        17.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        현재 기준개념으로 개발하여 상용화 단계에 있는 심층 동굴 처분기술에 대한 대안으로서 지질학적 조건이 더 안정적인 지하 3~5 km의 심도에 사용후핵연료를 포함한 고준위폐기물을 처분하는 심부시추공 처분기술의 국내 적용 가능성을 예비 평가 하였다. 이를 위하여 심부시추공 처분개념의 기술적 적용성 분석에 필요한 국내 기반암 분포특성 및 심부시추공 처분부 지적합성 평가 기술 분석과 대구경 심부시추기술을 평가하였다. 이들 분석결과를 바탕으로 심부시추공 처분시스템 설계 기준 및 요건에 적합한 심부시추공 처분용기 및 밀봉시스템 개념을 설정하여 예비 기준 심부시추공 처분 개념을 도출하였다. 그리고 도출된 예비 기준 처분시스템에 대하여 열적 안정성 및 그래픽 처분환경에서의 처분공정 모사 등 다양한 성능평가를 수행하고 이들을 종합하여 심부시추공 처분시스템의 국내 적용성에 대하여 다양한 관점에서의 예비평가를 수행하였다. 결론적으로, 심부시추공 처분시스템은 처분심도와 단순한 방법으로 인하여 안전성 및 경제적 타당성 측면에서 많은 장점이 있지만, 불확실성을 줄이고 인허가를 획득하기 위해서는 이 기술에 대한 현장실증이 필수적이다. 본 연구결과는 사용후핵연료 관리 국가정책 수립을 위한 공학적 근거자료로 활용이 가능하며, 심부시추공 처분기술에 관심을 갖는 방사성폐기물 관리 이해당사자들에게 필요한 정보자료로 제공될 수 있다.
        4,800원
        18.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 심부시추공 처분을 위한 밀봉시스템으로서 Gibb’s Group에 의해 제안된 화강암 용융 및 재결정화에 의한 시 추공 밀봉 방안에 대해 KURT 화강암을 대상으로 실현 가능성을 확인하였다. 화강암 용융 실험은 첨가제를 이용한 상압용 융시험과 물의 기화에 의한 수증기 고압용융시험 2가지로 수행되었다. 상압 용융시험 결과, KURT 화강암 분말에 NaOH를 첨가하여도 기본 융점보다 낮은 1,000℃에서 부분용융이 시작되었으며, 냉각된 용융물에서 침상결정의 형성을 확인하였다. 수증기 고압시험은 물의 첨가량에 따라 수증기압을 달리하며 최대 400 bar의 수증기압까지 용융 시험이 진행되었다. KURT 화강암은 낮은 수증기압에도 1,000℃에서 부분 용융이 시작되었으나, 물이 많이 첨가된 높은 수증기압에서 화강암의 부분 용융은 보이지 않았다. 따라서 소량의 수증기가 있는 고압상태가 화강암의 용융에 적합한 것으로 판단되었다. 한편, 고온고압의 수증기는 내부식성의 반응기 벽을 부식시켜, 고온의 수증기에 의한 처분용기의 부식 문제가 발생되었다.
        4,300원
        1 2