This study was conducted to investigate the fermentation characteristics and anti-obesity effects of Cheonnyuncho (Oputia Humifusa) fruit fermented with Lactobacillus plantarum SRCM 100320 (FC). The pH gradually decreased from 4.77 to 3.63 at 72 hours during fermentation. Counts of lactic acid bacteria, total polyphenol and flavonoid contents and DPPH scavenging activity were the highest at 48 hours during fermentation. Evaluation of the composition of polyphenols and flavonoids of FC fermented at 48 hours by HPLC revealed hyperoside (quercetin 3-galactoside), luteolin and kaempferol were the major components. The hyperoside content of FC was decreased, while the luteolin and kaempferol contents of FC were increased compared to unfermented Cheonnyuncho (NFC). Evaluation of the anti-obesity effects of FC in 3T3L-1 cells revealed that the accumulation of triglyceride was inhibited by about 27.3% in cells treated with FC at 150 μg/mL compared to NFC. These findings indicate FC has the potential for use as an anti-obesity material.
The purpose of this study was to investigate the chemical composition of the freeze-dried stems and fruit of the cactus Cheonnyuncho. The analysis showed that powdered stems have the highest fat content (1.91%) and the powdered fruits have he highest protein content (2.62%). The K content of the fruits higher than that of the stems, while the Ca, Mg, Na and P contents of the stems were higher than those of the fruits. Both the stems and fruits powders contained high levels of the amino acids glutamic acid and aspartic acid. The free sugars such as sucrose, fructose, and glucose were detected in both the stems and fruits. The 75% ethanol (EtOH) extract showed a relatively high antioxidative activity compared to those of the water and 75% methanol (MeOH) extracts. Furthermore, the 75% EtOH extract of the stem powder exhibited a total polyphenol content of 3.60 g/100 g, and a total flavonoid content of 2.00 g/100 g. The antioxidant activities of the stem and fruit powder extracts, measured in DPPH radical scavenging experiments, were higher than that of the control group.
The purpose of this study was to perform a functional components analysis and investigate the physical properties of powders made from the stems or fruit of freeze-dried Cheonnyuncho cactus (Opuntia humifusa). The functional components analysis showed that the stem and fruit powders han vitamin C levels of 42.14 mg and 105.21 mg, respectively. The stems powder contained more lutein than the fruit powder. The fruit powder contained more vitamin C than the stem powder. The SDF (soluble dietary fiber) and IDF (insoluble dietary fiber) in the stem powder were 45.24% and 22.15%, respectively, which were higher then the values for the fruit powder. The stem and fruit powders contained 19.30 mg/g and 25.10 mg/g of crude saponin, respectively. The pH of the stem and fruit powders was 5.34 and 5.07, respectively, both indicating low acidity. The L, a and b values of the stem powder color were 78.28, –3.71, and 19.19, respectively. The L, a and b values of the fruit powder color were 55.56, 24.84, and –3.18, respectively. The stems powder had a higher bulk density, water holding capacity, and swelling power than those of the fruit powder, but water-retaining capacity of the stem powder was lower than that of the fruit powder. In addition, the stems powder had a higher viscous material content and water uptake compared to the fruit powder. Based on the above results, we determined that Cheonnyuncho (Opuntia humifusa) powder had potentially useful functional components and physical properties.
Recently, NADPH oxidase 4 (NOX4)-mediated generation of intracellular reactive oxygen species (ROS) was proposed to accelerate adipogenesis of 3T3-L1 cell. We have previously shown that Cheonnyuncho (Opuntia humifusa) extract significantly inhibited adipocyte differentiation via downregulation of PPARγ (peroxisome proliferator-activated receptor gamma) gene expression. In this study, we focused on the molecular mechanism(s) of NOX4, G6PDH (glucose-6-phosphate dehydrogenase) and antioxidant enzymes in anti-oxidative activities of 3T3-L1 adipocytes. Our results indicate that Cheonnyuncho extracts markedly inhibits ROS production during adipogenesis in 3T3-L1 cells. Cheonnyuncho extracts suppressed the mRNA expression of the pro-oxidant enzyme such as NOX4 and theNADPH-producing G6PDH enzyme. In addition, treatment with Cheonnyuncho extract was found to upregulate mRNA levels of antioxidant enzymes such as Mn-SOD (manganese-superoxide dismutase), Cu/Zn-SOD (copper/zinc-SOD), glutathione peroxidase (GPx), glutathion reductase (GR), and catalase, all of which are important for endogenous antioxidant responses. These data suggest that Cheonnyuncho extract may be effective in preventing the rise of oxidative stress during adipocyte differentiation through mechanism(s) that involves direct down regulation of NOX4 and G6PDH gene expression or via upregulation of endogenous antioxidant responses.
최근 천년초 선인장은 녹차 및 양파와 같은 피토케미칼(phytochemical)에 함유된 페놀성 화합물의 중요한 소재로 보고되고 있다. 본 연구에서는 천년초 열수 및 80% 에탄올 추출물의 총 페놀 및 총 플라보노이드 함량, 항산화 활성(DPPH 라디칼 소거능 및 환원력) 및 항비만 활성을 평가하였다. 총 페놀 함량은 천년초 열수 추출물 및 80% 에탄올 추출물에서 각각 와 mg GAE/g로 나타난 반면, 총 폴라보노이드 함량은 80% 에탄올