검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        1.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The optimization of deacetylation process parameters for producing chitosan from isolated chitin shrimp shell waste was investigated using response surface methodology with central composite design (RSM-CCD). Three independent variables viz, NaOH concentration (X1), radiation power (X2), and reaction time (X3) were examined to determine their respective effects on the degree of deacetylation (DD). The DD of chitosan was also calculated using the baseline approach of the Fourier Transform Infrared (FTIR) spectra of the yields. RSM-CCD analysis showed that the optimal chitosan DD value of 96.45 % was obtained at an optimized condition of 63.41 % (w/v) NaOH concentration, 227.28 W radiation power, and 3.34 min deacetylation reaction. The DD was strongly controlled by NaOH concentration, irradiation power, and reaction duration. The coefficients of correlation were 0.257, 0.680, and 0.390, respectively. Because the procedure used microwave radiation absorption, radiation power had a substantial correlation of 0.600~0.800 compared to the two low variables, which were 0.200~0.400. This independently predicted robust quadratic model interaction has been validated for predicting the DD of chitin.
        4,000원
        2.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A conventional porous carbon is still a very promising material for the removal of gaseous pollutants because of its abundant surface functional groups and a high specific surface area. Here, we prepared an environment-friendly uniform N-rich narrow micropore activated carbon, for the removal of formaldehyde, based on steam activation and N-rich with chitin as the starting material. A sample carbonized at 500 °C and steam activated at 800 °C (CAC800) showed a reasonable yield (55%) with uniform and narrow micropores without mesopores but having a balanced nitrogen functionality. CAC800 possesses outstanding formaldehyde removal capabilities under both dry and wet (humidity 45%) conditions. In addition, when compared with commercial activated carbon materials, we clearly demonstrated that the existence of high nitrogen content with uniform and narrow micropores simultaneously removed formaldehyde, effectively.
        4,000원
        4.
        2022.09 구독 인증기관 무료, 개인회원 유료
        리튬-이온 전지 기술의 발전과 함께 다량의 리튬 사용에 따라 리튬-이온 전지에 대한 수요와 공급의 균형이 무너지고 있으며, 따라서 리튬을 대체할 수 있는 차세대 이차 전지의 개발이 필요해지고 있다. 최근 친환경적이며, 값싸며 안전 하고, 다가의 전자를 활용할 수 있는 아연 이온을 활용하는 수계 아연-이온 전지가 주목받고 있다. 그럼에도 불구하 고 아연-이온 전지에 사용될 수 있는 전류 집전체에 대한 개발 연구는 거의 없으며, 특히 현재 사용되고 있는 금속 기반의 전류 집전체는 그 무게가 무거워 실용적으로 사용되기 힘들다. 본 연구에서는 접착 특성이 매우 우수한 키틴 바인더를 사용하여 집전체 없이 지탱이 가능한 전극을 개발하였으며 아연-이온 전지에서의 그 특성을 평가하였다. 전 극 제조는 전통적인 코팅법과 스핀 코팅법을 사용하여 비교하였으며, 스핀 코팅이 더 균일한 전극 형성과 함께 더 우 수한 배터리 성능을 나타냄을 확인하였다.
        4,000원
        6.
        2019.04 구독 인증기관·개인회원 무료
        Insect cuticle or exoskeleton is a complex extracellular matrix formed primarily from structural polysaccharide chitin and protein, and it plays a critical role in protecting them from various environmental stresses and pathogenic infection. Despite of limited composition, insect cuticle has remarkably diverse mechanical properties, ranging from soft and flexible to hard and rigid. My research has been focusing on functional importance of the genes involved in chitin metabolism and cuticle tanning (sclerotization and pigmentation) to comprehensively understand the genetic, enzymatic as well as molecular mechanism underlying differentiation, development and formation of insect cuticular extracellular matrices.
        7.
        2018.10 구독 인증기관·개인회원 무료
        Chitin deacetylases (CDAs) are extracellular-modifying enzymes that deacetylate chitin to produce chitosan. In insects, this modification may contribute to the affinity and/or cross-linking of chitin/chitosan-like polysaccharides for a variety of structural proteins, which may lead to diverse mechanical properties of the cuticle. We previously reported the functional importance of Group I CDAs, TcCDA1 and TcCDA2, as well as the two alternative spliced isoforms of the latter, TcCDA2a and TcCDA2b from the red flour beetle, Tribolium castaneum in molting, morphology of cuticle and movement of legs. In this study, we further analyzed protein localization, ultrastructural defects of the cuticles and leg joints after RNAi of those genes. Both proteins are mainly present in the innermost procuticle region called the “assembly zone”. Loss of function of either TcCDA1 or TcCDA2 caused disorganized chitinous horizontal laminae and vertical pore canals in both the rigid and soft cuticles. RNAi of TcCDA2b affects cuticle integrity similar to that seen in RNAi of the two alternatively spliced forms of TcCDA2. In contrast, TcCDA2a-deficient adult, like that seen in the hypomorphic phenotype produced by RNAi of TcCDA1, exhibited ruptured tendons between femur and tibia, resulting in loss of locomotion ability. These results suggest that Group I CDAs play critical roles in molting, morphology, ultrastructure and mobility in T. castaneum. This work was supported by NRFs (NRF-2015R1A6A3A04060323 and NRF-2018R1A2B6005106).
        8.
        2018.04 구독 인증기관·개인회원 무료
        To accommodate growth, insects must periodically replace their chitin/protein-rich cuticles in a process called “molting or ecdysis”. During each molt cycle, a new cuticle is deposited simultaneously with degradation of the chitinous procuticle of the old one by molting fluid enzymes including epidermal chitinases. Here, we demonstrated a novel role for an endochitinase, TcCHT7, from the red flour beetle, Tribolium castaneum, belonging to a subfamily (Group III) that contain two catalytic domains, in organizing chitin in the newly forming cuticle rather than in degrading chitin present in the prior one. The conservation of CHT7-like proteins among many insect and other arthropod species indicates a critical role for the Group III class of chitinases in the higher ordered organization of chitin fibers for development of the structural integrity of many invertebrate exoskeletons.
        9.
        2017.04 구독 인증기관·개인회원 무료
        Insect chitinases (CHTs), an extracellular enzyme, belong to family 18 glycosyl hydrolases that hydrolyze chitin by an endo-type manner. In insect genomes, there are a large number of genes encoding CHT-like proteins, and they have been classified into eleven groups based on phylogenetic analysis. In this study, we have investigated functions of a group III chitinase (TcCHT7) in Tribolium castaneum. Although, unlike most insect CHTs, TcCHT7 contains a predicted transmembrane segment in N-terminal, immunohistochemical analysis reveals that it is localized in the newly forming procuticle, suggesting that TcCHT7 is released from the plasma membrane of underlying epidermal cells. RNAi for TcCHT7 does not affect on any types of molting. However the resulting pupae and adults fail to undergo wing-expansion and abdominal contraction. In addition, TcCHT7-deficient insects exhibit ultrastructural defects in both rigid (e.g. elytron) and soft (e.g. hindwing) cuticles. These results demonstrate that functional importance of TcCHT7 in the formation of the rigid and soft cuticles of the beetle.
        10.
        2017.04 구독 인증기관·개인회원 무료
        Chitin deacetylases (CDAs) are extracellular-modifying enzymes that deacetylate chitin to produce chitosan. Insect CDAs have been divided into five groups based on phylogenetic analysis. We previously reported the functional importance of group I CDAs, TcCDA1 and TcCDA2, from Tribolium castaneum in molting, morphology of cuticle as well as in movement of legs. However, ultrastructure in the cuticle after RNAi for these genes have not been investigated. In this study, we further analyzed precise localization of these proteins and ultrastructural changes/defects of the cuticles in TcCDA1- and TcCDA2-deficient insects. Loss of function of TcCDA1 and TcCDA2 causes disorganized horizontal laminae and vertical pore canals in both rigid (e.g. elytron and ventral body wall) and soft (e.g. hindwing and dorsal body wall) adult cuticles. These results indicate that TcCDA1 and TcCDA2 are critical for development and formation of the beetle cuticles
        11.
        2016.04 구독 인증기관·개인회원 무료
        Insect chitinases (CHTs) belong to family 18 glycosylhydrolases and hydrolyze chitin by an endo-type manner. One of the functions of CHTs is in the turnover of chitin-containing extracellular matrices such as the cuticle and peritrophic matrix of the midgut. There are a large number of genes encoding CHT-like proteins in insects, and they have been classified into eleven groups based on phylogenetic analysis. We have investigated functions of a group III chitinase in Tribolium castaneum (TcCHT7) containing a predicted transmembrane segment in N-terminal region. Recombinant TcCHT7 exhibits chitinolytic activity against CM-Chitin-RBV. Immunohistochemical analysis shows that TcCHT7 is localized in newly formed procuticle in elytral cuticles, suggesting that TcCHT7 is released from the plasma membrane of underlying epidermal cells. TcCHT7-deficient pupae and adults fail to undergo wing-expansion and abdominal contraction. In addition, cuticular chitin accumulates in the inner region of the procuticle where disorganized horizontal laminae and pore canals are evident. These results demonstrate that TcCHT7 plays a critical role in the formation of the rigid and soft cuticles of the beetle. This work was supported by NRFs (NRF-2015 R1A2A2A01006614).
        12.
        2016.04 구독 인증기관·개인회원 무료
        Chitin synthase (CHS) is an important enzymatic component, which is required for chitin formation in the cuticles and cuticular linings of other tissues in insects. CHSs have been divided into two classes, class A and B, based on their amino acid sequence similarities and functions. Class A CHS (CHS-A) is specifically expressed in the epidermis and related ectodermal cells such as tracheal cells, while expression of class B CHS (CHS-B) is expressed in gut epithelial cells that produce peritrophic matrices. In this study, we cloned the CHS-A gene from the beet armyworm, Spodoptera exigua. The SeCHS-A mRNA was expressed in all developmental stages and specifically in the epidermis and tracheae tissue by RT-PCR analysis. Expression of SeCHS-A gene was suppressed by feeding double-stranded RNA (dsRNASeCHS-A, 150 ng/larva) in the fifth instar of S. exigua. The suppression of SeCHS-A gene expression significantly induced mortality on pupal stage. Also, larvae fed with dsRNASeCHS-A significantly enhanced pathogenicity of an entomopathogenic fungus, Beauveria bassiana ANU1. These results suggest that the SeCHS-A gene plays an important role in development of S. exigua and dsRNA, which is a specific to SeCHS-A gene, may be applied to effective pest control with B. bassiana.
        13.
        2016.04 구독 인증기관·개인회원 무료
        Chitin deacetylases (CDAs) are chitin-modifying enzymes that deacetylate chitin to form chitosan. In insects, this modification may contribute to the affinity and/or cross-linking of chitin/chitosan-like polysaccharides for a variety of structural proteins that may lead to diverse mechanical properties of the cuticle. DmCDA1 (serpentine) and DmCDA2 (vermiform) from Drosophila melanogaster play roles in development and morphology of embryonic tracheal tubes. We previously reported the functional importance of TcCDA1 and TcCDA2 orthologs to DmCDA1 and DmCDA2 from Tribolium castaneum, in molting, morphology of cuticle, and movement of legs. In this study, we further analyze ultrastructural defects of the cuticles and leg joints in TcCDA1- and TcCDA2-deficient insects. Loss of function of TcCDA1 and TcCDA2 causes disorganized chitinous horizontal laminae and vertical pore canals of rigid adult cuticle (e.g. elytron). Both proteins are also required for laminal organization in soft cuticle (e.g. hindwing). Morphological analysis of TcCDA1- and TcCDA2A-deficient adult revealed that ruptured tendons between femur and tibia cause the defects in movement of the leg joint. This work was supported by NRF (NRF-2015R1A2A2A01006614).
        14.
        2013.10 구독 인증기관·개인회원 무료
        Insect chitinases (CHTs), which belong to family 18 glycosylhydrolases (GH-18), have been detected in molting fluid and gut tissues and are predicted to mediate the digestion of chitin present in the exoskeleton and peritrophic matrix (PM) in the gut. Based on amino acid sequence similarity and phylogenetic analysis, insect CHT family proteins have been classified into eight groups (group I to VIII). The CHTs belonging to different groups have distinctly different developmental patterns of expression and tissue specificity, suggestive of distinct biological functions. CHT7s belong to Group III chitinase contain two catalytic domains and one chitin binding domain (CBD). The catalytic domain 1 of this group of chitinases exhibits greater sequence similarity to one another than to the catalytic domain 2 in the same protein(s), suggesting distinct functions and/or evolutionary origins for each of these two catalytic domains. This group of chitinases, unlike most insect CHTs, possesses a predicted transmembrane segment at the N-terminal region. The recombinant T. castaneum CHT7 that was expressed in Hi-5 insect cells was bound to the cell membrane. Apparently, the catalytic domains of this CHT face the extracellular space as revealed by its ability to hydrolyze an artificial chitin substrate added to the medium. DsRNA-based functional studies (RNAi) for several CHT genes in Tribolium castaneum indicated that CHTs belong to groups I (TcCHT5) and II (TcCHT10) are critical for molting and turnover of chitin in the old cuticle. In other hand, RNAi for TcCHT7 did not affect any types of molting such as larval-larval, larval-pupal and pupal-adult. The resulting pupae or adults, however, failed to wing-expansion and abdominal contraction. Immunohistochemical analysis revealed that TcCHT7 protein is localized in newly synthesized procuticle, suggesting that TcCHT7 could be released form the plasma membrane of epidermal cells by proteolysis. Chitin seems to accumulate within the assembly zone of the elytral and body wall cuticle in dsTcCHT7-treated animals. Transmission electron microscopy revealed that down-regulation of TcCHT7 transcripts resulted in disorganization of chitin laminar and vertical canals in the procuticle. These results suggest that TcCHT7 may have critical roles in the laminar assembly and synthesis and/or deposition of cuticular chitin. This work was supported by NRF (NRF-2012R1A2A1A01006467).
        15.
        2011.05 구독 인증기관·개인회원 무료
        The use of insect growth regulators (IGRs) has been gaining popularity as an environmentally friendly option to improve existing integrated pest management (IPM) strategies. Although IGRs have a selective effect on target organisms, they may exert a more selective effect on non-target organisms. In this study, the toxic effects of teflubenzuron on biological traits of P. rosea, Collembola, were assessed in the OECD artificial soil under two different exposure conditions, one was exposed in the bulk soil, and the other was exposed in the compacted soil which unidirectional force was applied to the soil surface. After 28 days of exposure, the toxicity of teflubenzuron on the survival and juvenile production of P. rosea in the bulk system was more toxic than that of the compact system. Moreover, not only the egg production but also the hatching rate and molting frequency of P. roseas was decreased in a concentration dependent manner. These results suggest that the IGRs teflubenzuron exhibit significant impacts on the biological traits of non-target organisms P. rosea and its toxic effects are differently assessed depending on the exposure conditions.
        16.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 친환경 살균자재로 알려져 있는 키틴분해 미생물과 석회보르도액을 ‘신고’ 배나무에 처리하였을 때 검은별무늬병 방제율과 과실품질에 미치는 영향에 대해서 조사하였다.유기농 과원에서 생산된 과일은 관행으로 재배한 과일에 비교해서 유기물과 토양 칼슘과 마그네슘 농도를 증가시켰다. 저농약으로 재배된 관행 과원에서는 상당한 검은별무늬병 발생이 억제되었으나, 친환경 살균제를 이용한 유기농 과원에서는방제효과가 없었다. 관행 재배된 과실은 석세포를 감소시키는영향이 있었지만, 유기농 과실에서는 3%이상의 많은 석세포함량을 보였고, 과실 경도를 증가시켰다. 석회보르도액은 당도와 진한 적색의 과실을 생산했지만, 수확된 과실의 표면에 얼룩이 많이 발생하였다.
        4,000원
        17.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        실리카 입자를 기공 형성제로 사용하여 물리적 강도와 단백질 결합용량이 높은 다공성 키토산 및 키틴 친화 막을 제조하였다. 키토산 친화 막의 BSA 단백질 결합용량은 최대 21.8mg/mL이었으며, 키틴 친화 막의 lysozyme 효소 결합용량은 최대 26.1mg/mL이었다. 제조된 다공성 키토산 및 키틴 친화 막을 사용하여 단백질 용액의 loading 유량, loading 양 및 농도 변화에 따른 BSA와 lysozyme의 친화 막 여과 크로마토그래피 분리 실험을 수행하였다. 친화 막 여과 크로마토그래피 분리 실험을 통해 얻어진 loading/washing/elution의 단계로 구성된 일련의 크로마토그램으로부터 단백질 용출량과 결합수율을 구하였다. 키토산 및 키틴 친화 막에의 BSA 및 lysozyme 단백질의 결합량과 결합수율은 loading용액의 유량이 작을수록, 주입량 및 농도가 클수록 증가하였다. 이 결과로부터 실리카 입자를 기공 형성제로 사용하여 제조된 다공성 키토산 및 키틴 막은 단백질의 대규모 여과 크로마토그래피 분리를 위한 친화 막으로서 효과적인 활용이 기대된다.
        4,000원
        19.
        2006.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        실리카 입자를 기공 형성제로 사용하여 다공성 키토산 및 키틴 막을 제조하였다. 다공성 막의 제조는 다음의 3단계 절차로서 수행되었다: (1) 키토산 용액에 실리카 입자를 첨가시켜 필름을 형성시킨 후, (2) 이 필름을 알카리 용액에 침지시켜 실리카 입자를 제거하여 다공성의 키토산 막을 제조하였으며, (3) 다공성 키토산 막을 acetic anhydride를 사용하여 아세틸화시킴으로서 다공성 키틴 막을 제조하였다. 물리적 강도가 우수하고, 적절한 순수 투과량을 갖는 다공성 키토산 막과 키틴 막의 최적 제막조건이 제시되었다. 단백질 친화성을 부여하기 위해 다공성 키토산 막에 반응성 염료인 Cibacron Blue 3GA를 고정화시켰으며, BSA 단백질 및 lysozyme 효소의 흡착실험을 수행하여 친화 키토산 막 및 키틴 막의 단백질 결합용량을 측정하였다. 친화 키토산 막의 BSA 단백질 결합용량은 약 22 mg/mL이었으며, 친화 키틴 막의 lysozyme 효소 결합용량은 약 26 mg/mL로서 이는 키토산 또는 키틴을 기반으로 하여 제조된 hydrogel bead의 단백질 결합용량보다 수~수십 배 큰 값으로서, 향후 막여과 크로마토그래피용 친화 막으로의 효과적인 활용이 기대된다.
        4,300원
        20.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We cloned seven genes encoding chitin synthases (CHSs) by PCR amplification from genomic DNAs of four strains of the genus Sporobolomyces and of Bensingtonia subrosea using degenerated primers based on conserved regions of the CHS genes. Though amino acid
        4,000원
        1 2