In concrete structures exposed to chloride environments such as seashore structures, chloride ions penetrate into the concrete. Chlorine ions in concrete react with cement hydrates to form Friedel’s salt and change the microstructure. Changes in the microstructure of concrete affect the mechanical performance, and the effect varies depending on the concentration of chloride ions that have penetrated. However, research on the mechanical performance of concrete by chloride ion penetration is lacking. In this study, the effect of chloride ion penetration on the mechanical performance of dry cask concrete exposed to the marine environment was investigated. The mixture proportion of self-compacting concrete is used to produce concrete specimens. CaCl2 was used to add chlorine ions, and 0, 1, 2, and 4% of the binder in weight were added. To evaluate the mechanical performance of concrete, a compressive strength test, and a splitting tensile strength test were performed. The compressive strength test was conducted through displacement control to obtain a stress-strain curve, and the loading speed was set to 10 με/sec, which is the speed of the quasi-static level. The splitting tensile strength test was performed according to KS F 2423. As a result of the experiment, the compressive strength increased when the chloride ion concentration was 1%, and the compressive strength decreased when the chlorine ion concentration was 4%. The effect of the chloride ion concentration on the peak strain was not shown. In order to present a stress-strain curve model according to the chloride ion concentration, the existing concrete compressive stress-strain models were reviewed, and it was confirmed that the experimental results could be simulated through the Popovics model.
It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the resistance against chloride ion and sulfate attack of the cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of 20±3℃ and immersed in fresh water, 10% sodium sulfate solution for 28 and 91 days, respectively. To evaluate the resistance to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete with decreasing water-binder ratio.
수산화물법에 의해 제작된 α-stannic acid의 열분해 거동과 SnO2분말의 성질에 미치는 잔류염소이온의 영향을 관찰하였다. SnCl4와 NH4OH 수용액을 중화시켜 α-stannic acid침전물을 제작하고 NH4NO3수용액으로 세척하였다. 분말내의 잔류 염소이온의 양을 주절하기 위하여 세척정도를 3단계로 조정하였다. 세척후 100˚C에서 건조하고, 500˚C ~ 1100˚C에서 하소함으로써 SnO2분말을 제조하였다. α-stannic acid의열분해 거동ㅇ르 DT-TGA 와 FTIR을 통하여 관찰하고, SnO2분말의 조성과 입자크기 및 비표면적을 각각 AES, TEM 및 BET을 통하여 측정하였다. 잔류 염소이온 양이 감소되면, 저온 하소시 일차입자의 상대적 크기가 커지는 반면 고온하소시에는 상대적으로 감소되었ㄷ. 잔류 염소이온의 일부는 α-stannic acid내의 격자산소 자리에 위치함으로써, 저온가열시 결정수탈리와 결정화를 지연시키고 또한 고온가열시에는 이의 증발에 의해 산소공공이 생성되어 소결을 촉진시킨다고 제의하였다.
The purpose of this experimental study is to chloride ion penetration resistance performance of concrete using Nano-TiO2 Carrier. As a result, concrete using Nano-TiO2 Carrier was confirmed to be superior than ordinary concrete and commercial TiO2 concrete chloride ion penetration resistance performance.
양생조건에 따른 고로슬래그를 혼입한 콘크리트의 염화물 이온 확산계수의 변화를 관찰하기 위하여 GGBFS 혼입율 0%, 30%, 60%로 구분하고 W/B를 40%,50%,60%로, 양생조건을 기중양생과 수중양생으로 시험체를 제작하여 콘크리트 염화물 이온 확산계수 평가를 실시하였다. 평가결과 GGBFS의 치환율이 증가할수록 콘크리트 염화물이온 확산계수는 감소하였지만, 양생조건에 따른 확산계수 편차가 증가하는 것을 확인하였다. 특히 W/B가 증가할수록 그 차이는 증가하였으며. W/B 60% 조건에서 수중양생 대비 기중양생 시험체의 염화물 이온 확산계수는 2배 가까이 증가하는 것을 확인하였다.
Recently, a great social damage has been caused by the sargassum homeri, which has flowed from China in the Jeju and Namhae coasts. In this study, biopolymer was prepared by using sargassum homeri and applied to bridge pavement concrete. The performance of chloride ion penetration resistance of the bridge pavement concrete made of biopolymer was evaluated. As a result, excellent penetration resistance performance was shown.
In this study, the effect of calcium leaching on chloride ion penetration resistance of mortar specimens was evaluated. According to test results, the penetration depth of chloride ion was increased after the calcium leaching attack.
This study aimed to analyze the growth and physical responsees of Dracaena braunii in response salt accumulation in ornamental water culture and to examine the effect of activated carbon on this growth response. The experiment was conducted in a plant growth chamber and the indoor environmental conditions of the chamber were set at 23 ± 1℃ temperature, 70 ± 3% humidity, and 1,000 lux brightness. The observation of the growth response of plants in the presence of activated carbon showed that the pH with activated carbon maintained sub-acidic to neutral (6.27∼7.32) conditions and showed decreased electric conductivity in the media. As the treatment with added activated carbon showed good growth and physical responses, this indicated that absorption effect of activated carbon had a positive influence on the growth of plants. However, as the absorption effect of activated carbon may decrease over time and the use of high concentrations of activated carbon might cause nutrition shortage, various concentration of activated carbon and their absorption effects need to be investigated in the future.
해양 콘크리트 구조물 중 침지대에 위치한 구조물은 수심이 10 m 깊어질수록 1 atm의 정수압을 받아 염화물이온 침투가 촉진될 가능성이 있다. 본 연구에서는 정수압이 해양콘크리트의 염화물이온침투에 미치는 영향과 원인을 평가하기 위하여 보통 포틀랜드 시멘트와 고로슬래그 시멘트를 활용한 콘크리트를 각각 1, 6 atm의 정수압과 인공해수에 노출시켜 깊이별 수용성 염화물량과 미세구조 분석을 실시하였다. 측정결과 6 atm의 정수압을 받는 콘크리트는 표면 염화물이온 농도가 급격하게 상승하며, 깊이별 수용성 염화물량이 증가하는 경향을 나타내었다. 또한, 정수압을 받은 콘크리트는 5~100 nm에 해당하는 모세관공극이 증가하는 경향을 나타내었다.
본 연구에서는 표면 침투 및 코팅형 흡수방지재인 Polydimethylsiloxane(PDMS)을 고인성 섬유복합체(ECC)에 적용하여 적용성, 강도 평가 및 염화물이온 침투 저항성능에 대한 연구를 수행하였다. PDMS 적용 방법에 따른 침투깊이를 분석한 결과 모든 방법에서 KS F4930 의 기준을 만족하는 것을 확인하였다. 적용 방법 중, 침지 방법이 가장 우수한 침투깊이를 보였으나 현장적용성을 고려할 경우 스프레이 방법이 적용 가능한 것으로 확인되었다. ECC 배합에 따른 PDMS 침투깊이 실험 결과 배합강도가 감소할수록 침투깊이는 최대 70% 이상 증가하는 경향을 나타났다. 압축강도 시험 결과에서는 PDMS 침투 깊이가 큰 M4-A, M4-B 시험체의 압축강도는 PDMS를 적용하지 않은 M4 시험체와 비교하여 9.6%, 8.0% 압축강도가 감소하였다. 또한, 침투깊이가 작은 M1-A와 M1-B 시험체의 압축강도는 M1 시험체와 비교하여 4%, 2.2% 감소하여 PDMS 침투깊이가 클수록 강도감소율이 증가하였다. 염소이온침투 저항성능 평가 시험결과, PDMS의 침투깊이가 클수록 염소이온 침투 저항성능이 향상되는 것을 확인하였다.
When the reinforced concrete structure is in a high salinity environment, chlorine ions penetrate from the surroundings, resulting in corrosion of the reinforcing bars, resulting in low durability. Therefore, studies on the immobilization of chlorine ions are underway, and anion exchange resin, one of them, was used in this study. In this study, chloride ion fixing ability was confirmed by replacing OPC, conventional bead anion exchange resin, and powder anion exchange resin with mortar and then using an electron probe X-ray micro-analyzer. The bead anion exchange resin replaced 3% of the fine aggregate volume and the powder anion exchange resin 5% of the cement volume. The fabricated specimens were cured for 28 days, immersed in NaCl solution for 28 days, and confirmed by electron probe X-ray micro-analyzer.
In this study, the chloride ion diffusion coefficient of ECC coated with silane-based protecting materials were evaluated. The evaluation was carried out according to NT BUILD 492. The test results show that when the protective material is applied to ECC, the chloride diffusion coefficient is reduced by 40-50%.
In this study, the absorption protection agent was applied to the surface of fiber reinforced concrete to evaluate the chloride ion penetration resistance. The evaluation was based on the method presented in KS F 2711. It was confirmed that the resistance performance against chloride ion was improved by 56∼71% when the coating material was applied.
The aim in this study was to remove Cl−, which can be problematic in the recycling of bottom ash, by identifying the optimum operating conditions for a soil electrolysis apparatus with spiral paddles and to use these as the base data in removing contaminants from various polluted soils using electrolysis. Unprocessed bottom ash collected from the openair storage yard at thermoelectric power plant H in Gyeong sang nam - do Province was used as the experimental material. The experimental methodology was to identify the optimum operating conditions to remove Cl− contained in the bottom ash using the following variables: use or not of spiral paddles, application or not of electrolysis, change of concentration of the electrolyte solution, electrolysis application time, and the voltage level during electrolysis. From the results, the highest removal efficiency of 91.4% was shown under the following conditions: use of the spiral paddles, use of 0.3% NaOH electrolyte solution, 20 min of electrolysis; and a voltage level of 5 V during electrolysis. It is evident that application of the soil electrolysis apparatus for removal of Cl− from bottom ash could be valuableas base data for purification of polluted soils in the future.
The present study was conducted for the purpose of analyzing the growth response of Dracaena braunii treated with chloride ions and to evaluate its salt tolerance. Distilled water (CON) was spiked with 1 (C1), 2 (C2), 5 (C5), 10 (C10) and 15 g/L (C15) CaCl2, respectively. Acidity (pH) and electrical conductivity of hydroponic solution, and leaf width, leaf length, root length, number of leaves, fresh weight, dry weight and the water content of Dracaena braunii were measured. Acidity and electrical conductivity remarkably increased commensurate with increasing concentrations of CaCl2. Growth in the C1 treatment was better than that in CON, whereas the C10 or C15 treatments caused either slow growth or withering of the plants. Fresh weight, dry weight and water content were significantly decreased in response to CaCl2 concentration, compared with those in the control. These results showed that CaCl2 concentration less than 1 g/L may be used as a hydroponic solution for D. braunii, as long as the water quality is not too saline. The chlorine ion has a negative effect on the growth.
From the test results, it was found that the compressive strength and the resistance of chloride ion penetration were evaluated the slag content of the concrete for bridge pavement. Compressive strength test results showed that initial strength was decreased as slag replacement ratio increased. The chlorine ion penetration performance increased with increasing strength.
From the test results, it was found that the compressive strength and the resistance of chloride ion penetration were evaluated the slag content of the concrete for bridge pavement. Compressive strength test results showed that initial strength was decreased as slag replacement ratio increased. The chlorine ion penetration performance increased with increasing strength.